Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Нули аналитической функции

Читайте также:
  1. I. Перепишите следующие предложения и переведите их на русский язык, обращая внимание на функции инфинитива.
  2. I. Понятие об эмоциях, их структура и функции. Механизмы психологической защиты
  3. III. Исследование функции почек по регуляции кислотно-основного состояния
  4. III. Функции Бюро контрольных работ
  5. III. Функции действующих лиц
  6. III. Функции Родительского комитета
  7. III. Цели, задачи и функции торговых предприятий

 

Определение. Точка называется нулем аналитической функции порядка (или кратности) , если . В случае точка называется простым нулем.

Теорема. Для того, чтобы точка была нулем -гo порядка функции , аналитической в точке , необходимо и достаточно, чтобы в некоторой окрестности этой точки имело место равенство , где аналитична в точке и .

Пример 1. Найти нули функции и определить их порядки.

Из уравнения находим точки , – нули данной функции. Имеем: , , т.е. точки – нули второго порядка данной функции.

Пример 2. Найти нули функции и определить их порядки.

Полагая , получаем, что или . Решая эти уравнения, находим нули функции . Пусть ; тогда можно представить в виде , где функция является аналитическойв точке , причем . Это означает, что точка есть нуль третьего порядка.Аналогично доказывается, что и точка является нулем третьего порядка. Исследуем нули . Производная в точках отлична от нуля. Следовательно, – простые нули функции .

 


Дата добавления: 2015-07-25; просмотров: 69 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Допоміжна| Изолированные особые точки

mybiblioteka.su - 2015-2024 год. (0.005 сек.)