Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Периодический характер изменения свойств атомов элементов: радиус, энергия ионизации, энергия сродства к электрону, относительная электроотрицательность.

А.В. Лысенкова, доцент, кандидат химических наук | ТЕОРЕТИЧЕСКИЕ ОСНОВЫ НЕОРГАНИЧЕСКОЙ | Лекция 2. Основные стехиометрические | Лекция 3. Важнейшие классы и номенлатура неорганических соединений | Лекция 4. Развитие учения о строении атомов | Ато­мов | Эффективные радиусы атомов, Ǻ 1,27 1,39 1,40 | Орбитальные и эффективные радиусы некоторых атомов и ионов | Лекция 7. Природа химической связи и строение химических соединений | И π- связи. |


Читайте также:
  1. I Мышцы спины (названия, функциональная характеристика).
  2. I. Общая характеристика и современное состояние системы обеспечения промышленной безопасности
  3. I. Общая характеристика направленности и система мотивации человека
  4. I. Оксиды их получение и свойства
  5. I. Понятие и характерны черты мусульманского права.
  6. I. Понятие малой группы. Виды и характеристика малых групп
  7. I. Темперамент, его типы и характеристики

Периодическая система элементов есть наглядный пример проявления различного рода периодичности в свойствах элементов, которая соблюдается по горизонтали (в периоде слева направо), по вертикали (в группе, например, сверху вниз), по диагонали, т.е. какое-то свойство атома усиливается или уменьшается, но периодичность сохраняется.

Рассмотрим как изменяются некоторые свойства атомов в периодах и группах.

1) Радиус атома. Радиус атома определяет размер атома и удаленность внешних электронов от ядра. В периоде слева направо (например, от атома Na к аргону для элементов 3 периода) радиус атома уменьшается, так как положительный заряд ядра от Na к аргону увеличивается, поэтому внешние электроны сильнее притягиваются к ядру, т.е. ближе будут к ядру, отчего радиус (размер) атома уменьшается.

В главных и побочных подгруппах сверху вниз радиус атома увеличивается, так как увеличивается число энергетических уровней в атоме и увеличивается поэтому удаленность внешних электронов от ядра. Но в главных подгруппах радиус атома сверху вниз (например, от лития к францию для элементов 1 группы) увеличивается сильно, а в побочных подгруппах (например, от меди Сu к золоту Аu) радиус атома увеличивается мало.

2) Энергия ионизации (J) или потенциал ионизации атома – это то количество энергии, которое необходимо затратить для отрыва электрона от атома (т.е. для превращения атома Эо в положительный ион Э+), т.е. Эо + J → Э+ + е или Nao + J → Na+ + e или Nao – 1e → Na+ - J. Чем легче атом отдает электрон, тем меньше значение энергии ионизации (т.е. меньше надо затратить энергии на отрыв электрона), тем сильнее выражены восстановительные (металлические) свойства атома.

В периоде слева направо (→) значение энергии ионизации увеличивается, так как положительный заряд ядра увеличивается, а радиус атома уменьшается, поэтому электрон все труднее оторвать от атома. Так, атом натрия будет иметь наименьшую энергию ионизации из всех элементов 3 периода, поэтому он будет самым сильным восстановителем и самым активным металлом. В главных подгруппах сверху вниз (например, от азота к висмуту в 5 группе) значение энергии ионизации уменьшается, так как сильно увеличивается радиус атома. Поэтому восстановительные свойства атомов сверху вниз увеличиваются.

3) Энергия сродства к электрону (или сродство к электрону) - это энергия, которая выделяется или затрачивается при присоединении электрона к нейтральному атому Эо с превращением его в отрицательный ион Э-, т.е.:

Эо + 1е → Э- ± Е. Например, Сlo + 1e → Cl- + E. Энергия сродства к электрону может быть как положительна (если она выделяется), так и отрицательна (если она затрачивается). Наибольшим сродством к электрону обладают галогены (F, Cl, Br, J), т.е. при присоединении к атомам галогенов электрона выделяется больше всех энергии. И, наоборот, сродство к электрону атомов большинства металлов отрицательно, т.е. энергия в этом случае затрачивается, т.е. присоединение электрона к атомам металла в большинстве случаев энергетически невыгодно.

4) Электроотрицательность элементов – это способность атома данного элемента оттягивать к себе электроны от других атомов в данной молекуле (в данном соединении). Таким образом, при образовании связи между двумя атомами разных элементов общая электронная пара смещается к более электроотрицательному элементу, причем это смещение электронов будет тем больше, чем больше различаются электроотрицательности атомов. Например, в молекуле НСl общая электронная пара (Н:Сl) смещена к более электроотрицательному атому хлора.

Электроотрицательность (ЭО) элементов в ПСЭ тоже изменяется периодически. В периодах слева направо (→) ЭО элементов увеличивается, а в главных подгруппах ЭО уменьшается. Чем более типичным металлом является элемент, тем меньше его ЭО. И, наоборот, чем больше ЭО элемента, тем сильнее он проявляет неметаллические свойства. Наибольшая ЭО у фтора, поэтому он самый активный неметалл.


Дата добавления: 2015-07-25; просмотров: 138 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Модель атома Бора (1913 г.).| Периодический характер изменения свойств простых веществ и оксидов элементов.

mybiblioteka.su - 2015-2025 год. (0.006 сек.)