Читайте также:
|
|
Если после очередного интервала начисления доход не выплачивается, а капитализируется, то для определения наращенной суммы применяются формулы сложных процентов. Сложные ссудные проценты достаточно широко применяются на практике.
Чем больше период начисления, тем больше разница в величине наращенной суммы при начислении простых и сложных процентов.
Формула для расчета сложных процентов имеет вид:
,
где S – наращенная сумма; P – величина первоначальной денежной суммы; n – продолжительность периода начисления в годах; i – ставка сложных ссудных процентов; n – количество лет.
Если срок ссуды не является целым числом, то формула для расчет наращенной суммы определяется:
,
где nа – целое число лет; nb – оставшаяся дробная часть года.
В случае если уровень сложных процентных ставок различается на разных интервалах начисления, то в конце всего периода начисления наращенная сумма будет определяться:
,
где n1, n2,…,nN – продолжительность интервалов начисления в годах; i1, i2,...,iN – годовые ставки процентов, соответствующие данным интервалам; N – количество интервалов начисления сложных процентов.
Если все интервалы начисления одинаковы (как обычно бывает на практике) и ставка сложных процентов одна и та же, то наращенная сумма будет определяться:
Начисление сложных процентов может осуществляться несколько раз в году, в этом случае оговаривается номинальная ставка процентов (j), то есть годовая ставка, по которой определяется величина ставки процентов, применяемая на каждом интервале начисления.
При m равных интервалах начисления и номинальной процентной ставке (j), величина номинальной процентной ставки, применяемой на каждом интервале начисления определяется .
Если срок ссуды составляет n лет, то наращенная сумма будет определяться:
,
где j – номинальная ставка сложных ссудных процентов; mn – общее число интервалов начисления за весь срок ссуды.
Если общее число интервалов начисления не является целым числом, то наращенная сумма будет определяться:
,
где l – часть интервала начисления.
Дата добавления: 2015-07-25; просмотров: 53 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Простые учетные ставки | | | Сложные учетные ставки |