Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Как жирные хвосты (Крайнестан) возникают из‑за нелинейных реакций на параметры модели

Наивный рационализм: точка зрения, согласно которой познание любого явления по определению доступно в стенах университета. Другое название – советско‑гарвардская иллюзия. | Графический тур по книге | Временной ряд | Пространство вероятностей | Штанги (выпуклые трансформации) и их свойства в пространстве вероятностей | Перевод фразы жирного тони «это не одно и то же» на язык математики, или Когда путают события и связанный с ними риск | Обратная проблема индюшки | Разница между точечной оценкой и распределением | Почему многие экономические модели делают нас хрупкими и разрушают экономику | Применение: модель Рикардо и левый хвост – цены на вино могут разниться |


Читайте также:
  1. ER-моделирование структуры предметной области
  2. I. РАЗВИТИЕ СЛУХОВЫХ ОРИЕНТИРОВОЧНЫХ РЕАКЦИЙ
  3. II. .1. Параметры выбранного башенного крана МБТК-80
  4. III. Типы семей, особенности их влияния на воспитание детей. Модели негативных семейных взаимоотношений
  5. IV. РАЗВИТИЕ ЗРИТЕЛЬНЫХ ОРИЕНТИРОВОЧНЫХ РЕАКЦИЙ, ЗРИТЕЛЬНО-МОТОРНОЙ КООРДИНАЦИИ, ОРИЕНТИРОВКИ В ВЕЛИЧИНЕ, ФОРМЕ, ЦВЕТЕ
  6. Алгоритм вычисления показателей в динамической модели и экономический анализ полученных результатов
  7. Анализ модели на чувствительность

 

У редких событий есть особенное свойство, которое сейчас никем не учитывается. Мы работаем с ними, используя модель, математический механизм: на входе в него закладываются параметры, а на выходе получается вероятность. Чем меньше у нас уверенности в точном значении параметров для подобных моделей, тем больше мы склонны недооценивать маленькие вероятности. Проще говоря, маленькие вероятности выпуклы в отношении ошибочных вычислений точно так же, как полет на самолете вогнут в отношении ошибок и пертурбаций (как мы помним, самолеты опаздывают, а не прилетают раньше срока). При этом чем больше источников пертурбаций мы забываем учесть, тем дольше будет лететь самолет по сравнению с нашей наивной оценкой времени в полете.

Все мы знаем: чтобы вычислить вероятность, используя стандартное нормальное статистическое распределение, нам нужен параметр «среднеквадратическое отклонение» – или что‑то подобное, характеризующее масштаб или дисперсию значений величины. Неопределенность в среднеквадратическом отклонении существенно влияет на малые вероятности. Так, для отклонения «три сигмы» вероятность события, которое должно случаться не чаще, чем один раз на 740 наблюдений, повышается на 60 процентов, если среднеквадратическое отклонение увеличивается на пять процентов, и падает на 40 процентов, если среднеквадратическое отклонение уменьшается на те же пять процентов. И если вы ошибаетесь в среднем на пять процентов, наивная модель выдаст оценку, заниженную примерно на 20 процентов. Асимметрия огромна, но лиха беда начало. Все становится совсем плохо, когда мы берем другие отклонения, скажем, «шесть сигм» (увы, в экономической науке эти «шесть сигм» встречаются сплошь и рядом): ошибка возрастает в пять раз. Чем реже событие (т. е. чем больше «сигма»), тем сильнее влияет маленькая неопределенность параметров на конечный результат. С событиями вроде «десять сигм» результаты отличаются в миллиард раз. Этот довод показывает, что меньшие вероятности требуют большей точности вычислений. Чем меньше вероятность, тем больше маленькое, чрезвычайно маленькое округление в расчете влияет на него так, что асимметрия становится абсолютно несущественной. Для расчета крошечных, совсем крошечных вероятностей вам нужна почти бесконечная точность в оценке параметров; малейшая неопределенность приведет к чудовищной катастрофе. Эти вероятности очень выпуклы в отношении возмущений. При помощи данного рассуждения я некогда доказывал, что маленькие вероятности невычислимы, даже если у нас есть работающая модель, а ее у нас, конечно же, нет.

Все то же самое относится к непараметрическому вычислению вероятностей по наблюдавшейся частоте. Если вероятность близка к 1/объем выборки, возникающая погрешность чудовищна.

Вот в чем ошибка «Фукусимы». Вот в чем ошибка Fannie Mae. Подытожим: маленькие вероятности растут тем быстрее, чем больше меняется параметр, который используется при вычислении.

 

 

Рис. 38. В гауссовой модели вероятность выпукла в отношении среднеквадратического отклонения. График показывает, как среднеквадратическое отклонение (STD) влияет на вероятность P>x и сравнивает две ситуации: P>6 при STD, равном 1,5, и P>6 при линейной взаимосвязи в промежутке между 1,2 и 1,8 (здесь a (1) = 1/5).

 

Плохо то, что возмущение σ затрагивает в том числе хвост распределения, причем выпукло; риск портфеля, который чувствителен к хвостам, возрастает при этом неимоверно. Мы все еще в гауссовом пространстве! Подобная взрывоопасная неопределенность возникает не из‑за естественных жирных хвостов в распределении, а вследствие маленькой неточности в оценке параметра. Это эпистемическое явление! Вот почему люди, использующие такие модели, зная, что оценка параметров неточна, неизбежно и жестоко противоречат сами себе[139].

Разумеется, неопределенность становится еще опаснее, когда на переменчивые хвостовые экспоненты мы накладываем не‑гауссову реальность. Даже при степенном распределении результат ужасен, особенно при изменении хвостовой экспоненты, когда последствия станут просто катастрофическими. Так что жирные хвосты означают невычислимость хвостовых событий – и не более того.

 

Усложнение неопределенности («Фукусима»)

 

Ранее мы говорили о том, что оценка приводит к ошибке. Расширим это утверждение: ошибки порождают ошибки; те, в свою очередь, тоже порождают ошибки. Если мы учтем этот эффект, маленькие вероятности вырастут вне зависимости от модели – даже при гауссовом распределении, – настолько, что достигнут жирных хвостов и породят степенные эффекты (даже так называемую бесконечную дисперсию), когда неопределенность более высокого порядка огромна. Даже при гауссовом распределении у среднеквадратического отклонения σ имеется пропорциональная ошибка a (1); у a (1) величина ошибки составляет a (2) и т. д. В итоге результат зависит от величины ошибки более высокого порядка a (n), связанной с a (n–1); если пропорция тут постоянна, наше распределение обретает очень толстые хвосты. Когда пропорциональные ошибки уменьшаются, жирные хвосты все равно остаются. Во всех случаях ошибка очень сильно влияет на малую вероятность.

Как ни печально, убедить людей в том, что во всякой оценке кроется ошибка, оказалось почти невозможно. Между тем может оказаться, что катастрофы вроде «Фукусимы», которые, как считается, происходят раз в миллион лет, на деле происходят раз в 30 лет, если правильно учесть все уровни неопределенности.

 


Дата добавления: 2015-07-20; просмотров: 46 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Более общая методология распознавания ошибки модели| Примечания, запоздалые соображения и дополнительное чтение

mybiblioteka.su - 2015-2025 год. (0.006 сек.)