Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Задания для самостоятельной работы. 1. Найти общее решение дифференциальных уравнений, допускающих понижение порядка:

Уравнения в полных дифференциалах | Геометрическая интерпретация решений дифференциальных уравнений первого порядка. | Метод Эйлера | Дифференциальные уравнения высших порядков | Уравнения, допускающие понижение порядка | Пример. | Уравнения, не содержащие явно независимой переменной | Структура общего решения | Общее решение линейного однородного дифференциального уравнения второго порядка | Постоянными коэффициентами |


Читайте также:
  1. He всем понравится то, что я делаю и это меня устраивает; если бы мои работы нравились каждому, то, видимо, я не сыграл бы ничего глубокого. Джошуа Рэдмэн
  2. I период работы
  3. I. Анализ воспитательной работы за прошлый год
  4. I. ВЫБОР ТЕМЫ КУРСОВОЙ РАБОТЫ
  5. II период работы
  6. II. Время начала и окончания работы
  7. II. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО НАПИСАНИЮ ВЫПУСКНОЙ КВАЛИФИКАЦИОННОЙ РАБОТЫ БАКАЛАВРА

1. Найти общее решение дифференциальных уравнений, допускающих понижение порядка:

1.1. 1.2.

Ответы

1.1. 1.2.

3.5.4. Линейные неоднородные дифференциальные уравнения с произвольными коэффициентами

Рассмотрим уравнение вида

С учетом обозначения можно записать:

При этом будем полагать, что коэффициенты и правая часть этого уравнения непрерывны на некотором интервале (конечном или бесконечном).

Теорема: Общее решение линейного неоднородного дифференциального уравнения в некоторой области есть сумма любого его решения и общего решения соответствующего линейного однородного дифференциального уравнения.

Доказательство. Пусть Y – некоторое решение неоднородного уравнения. Тогда при подстановке этого решения в исходное уравнение получаем тождество:

Пусть - фундаментальная система решений линейного однородного уравнения . Тогда общее решение однородного уравнения можно записать в виде:

const.

Далее покажем, что сумма является общим решением неоднородного уравнения.

Вообще говоря, решение Y может быть получено из общего решения, так как является частным решением.

Таким образом, в соответствии с доказанной теоремой, для решения линейного неоднородного дифференциального уравнения необходимо найти общее решение соответствующего однородного уравнения и каким- то образом отыскать одно частное решение неоднородного уравнения. Обычно оно находится подбором.

На практике удобно применять метод вариации произвольных постоянных.

Для этого сначала находят общее решение соответствующего однородного уравнения в виде:

Затем, полагая коэффициенты Ci функциями от х, ищется решение неоднородного уравнения:

Можно доказать, что для нахождения функций Ci(x) надо решить систему уравнений:

Пример:

Решить уравнение

Решение: решаем линейное однородное уравнение

Решение неоднородного уравнения будет иметь вид:

Составляем систему уравнений:

Решим эту систему:

 

Из соотношения найдем функцию А (х).

Теперь находим В(х).

Подставляем полученные значения в формулу общего решения неоднородного уравнения:

Ответ:

Таким образом, удалось избежать нахождения частного решения неоднородного уравнения методом подбора.

Вообще говоря, метод вариации произвольных постоянных пригоден для нахождения решений любого линейного неоднородного уравнения. Но так как нахождение фундаментальной системы решений соответствующего однородного уравнения может быть достаточно сложной задачей, этот метод в основном применяется для неоднородных уравнений с постоянными коэффициентами.


Дата добавления: 2015-07-16; просмотров: 29 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Пример.| Уравнения с правой частью специального вида

mybiblioteka.su - 2015-2024 год. (0.009 сек.)