Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Единое — это числа. Пифагор

Философия Сократа | Философия Платона | Философия Аристотеля | Стоицизм: счастье — это жизнь в соответствии с космическим законом | Основные черты античной философии | Функции (значимость) философии |


Читайте также:
  1. III. Теоретико-множественный смысл правил вычитания числа из суммы и суммы из числа.
  2. Единое Трудовое Братство
  3. Единое экономическое пространство
  4. МАКСИМУМ ЕСТЬ ЕДИНОЕ
  5. Модуль 3. Комплексні числа.
  6. Модуль 3. Комплексні числа.

 

Первая атака на проблему многого и единого оказалась несколько грубоватой, возможно успех достигается более изящными средствами. Видимо, Пифагор думал именно так. Он не отказался от четырех субстанций — огня, воды, земли и воздуха, но стремился найти их первоосновы, каковыми он считал числа. Начало всего единица, двойка, тройка, четверка; им соответствуют по порядку точка, линия (два конца), плоскость (три вершины треугольника), объем (четыре вершины пирамиды). Из объемных фигур происходят чувственно воспринимаемые тела, которые имеют четыре основы — огонь, воду, землю и воздух; превращение последних приводят к миру живого и человека. Пифагор везде как первичную рассматривает числовую сторону дела. А это означает, что все надо соизмерять, в том числе свои усилия. Один из афоризмов Пифагорагласил: «Весы не переступать», т. е. не переступать равенства и справедливости. Дружба есть равенство, у друзей все должно быть общим. Говорят, что ученики Пифагора считали свое имущество общим.

Автор немного увлекся следствиями из основного тезиса Пифагора. Возвратимся непосредственно к его анализу. В какой степени прав Пифагор! В очень большой. Пифагора должны глубоко чтить математики (что, кстати, насколько нам известно, они и делают). Действительно, именно математики показали всю силу теории чисел и числовых методов. Отдавая должное математике, мы все-таки вряд ли согласимся с Пифагором, что все можно свести к числу. Числа позволяют нам понять количественную сторону дела, но не качественную. Допустим, у меня зубная боль. Используя числа или их своеобразные словесные заместители типа «сильно», «не очень», «немножко», «противно», я могу сообщить врачу значимую для него информацию («Ой, как сильно болит зуб!»), но отсюда не следует, что зубная боль есть число; зубная боль, как и всякая боль, есть чувство.

Если бы Пифагор был прав, то философия была бы математикой. Но в такой подмене нет необходимости. Математика не может заменить философию, философия не может заменить математику.

Нам вновь не удалось раз и навсегда разрешить проблему многого и единого. Тем не менее в понимании этой проблемы мы сделали существенный шаг вперед. Это ясно из того, что числа позволяют нам описывать самые различные по качеству явления, используя единообразный подход.

 


Дата добавления: 2015-07-19; просмотров: 50 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Как так можно строить и где? Не иначе как мыслью в своём сознании.| Многое не существует. Сюрпризы элеатов

mybiblioteka.su - 2015-2025 год. (0.005 сек.)