Читайте также:
|
|
1)What is Interpolation?
In the mathematical field of numerical analysis, interpolation is a method of constructing new data points within the range of a discrete set of known data points.
In engineering and science, one often has a number of data points, obtained by sampling or experimentation, which represent the values of a function for a limited number of values of the independent variable. It is often required to interpolate (i.e. estimate) the value of that function for an intermediate value of the independent variable. This may be achieved by curve fitting or regression analysis.
A different problem which is closely related to interpolation is the approximation of a complicated function by a simple function. Suppose the formula for some given function is known, but too complex to evaluate efficiently. A few known data points from the original function can be used to create an interpolation based on a simpler function. Of course, when a simple function is used to estimate data points from the original, interpolation errors are usually present; however, depending on the problem domain and the interpolation method used, the gain in simplicity may be of greater value than the resultant loss in accuracy.
2) What is approximation?
An approximation is a representation of something that is not exact, but still close enough to be useful. Although approximation is most often applied to numbers, it is also frequently applied to such things as mathematical functions, shapes, and physical laws.
Approximations may be used because incomplete information prevents use of exact representations. Many problems in physics are either too complex to solve analytically, or impossible to solve using the available analytical tools. Thus, even when the exact representation is known, an approximation may yield a sufficiently accurate solution while reducing the complexity of the problem significantly.
For instance, physicists often approximate the shape of the Earth as a sphere even though more accurate representations are possible, because many physical behaviours — e.g. gravity — are much easier to calculate for a sphere than for other shapes.
It is difficult to exactly analyze the motion of several planets orbiting a star, for example, due to the complex interactions of the planets' gravitational effects on each other, so an approximate solution is effected by performing iterations. In the first iteration, the planets' gravitational interactions are ignored, and the star is assumed to be fixed. If a more precise solution is desired, another iteration is then performed, using the positions and motions of the planets as identified in the first iteration, but adding a first-order gravity interaction from each planet on the others. This process may be repeated until a satisfactorily precise solution is obtained. The use of perturbations to correct for the errors can yield more accurate solutions. Simulations of the motions of the planets and the star also yields more accurate solutions.
As another example, in order to accelerate the convergence rate of evolutionary algorithms, fitness approximation—that leads to build model of the fitness function to choose smart search steps—is a good solution.
The type of approximation used depends on the available information, the degree of accuracy required, the sensitivity of the problem to this data, and the savings (usually in time and effort) that can be achieved by approximation.
3)Kinds of approximation
There are
4)Kinds of interpolation
Дата добавления: 2015-11-14; просмотров: 34 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Chapter Twenty-Nine | | | Linear interpolation |