Читайте также:
|
|
Реакция макроорганизма на антигены достаточно однотипна, так как она ограничена набором факторов иммунной защиты и физиологическими возможностями самого макроорганизма. Однако в зависимости от природы антигена иммунная система не обязательно должна включать для его устранения весь имеющийся арсенал — в отношении конкретного антигена достаточно использовать лишь наиболее эффективные механизмы и факторы защиты. Поэтому при воздействии различных по природе и свойствам антигенов иммунное реагирование макроорганизма имеет свои особенности.
12.2.1. Особенности иммунитета при бактериальных инфекциях
Иммунная реакция макроорганизма в ответ на бактериальную инфекцию в значительной степени определяется факторами патогеннос-ти микроба и, в первую очередь, его способностью к токсинообразованию. Различают антибактериальный (против структурно-функциональных компонентов бактериальной клетки) и антитоксический (против белковых токсинов) иммунитет.
Основными факторами антибактериальной защиты в подавляющем большинстве случаев являются антитела и фагоциты. Антитела эффективно инактивируют биологически активные молекулы бактериальной клетки (токсины, ферменты агрессии и др.), маркируют их, запускают механизм антителозависимого бактериолиза и участвуют в иммунном фагоцитозе. Фагоциты осуществляют фагоцитоз, в том числе иммунный, внеклеточный киллинг патогена при помощи ион-радикалов и анти-телозависимый бактериолиз.
Ряд бактерий, относящихся к факультативным внутриклеточным паразитам, отличается повышенной устойчивостью к действию комплемента, лизоцима и фагоцитов (незавершенный фагоцитоз). К их числу относятся микобактерии, бруцеллы, сальмонеллы и некоторые другие. В отношении этих микробов антитела и фагоциты недостаточно эффективны, а сам инфекционный процесс имеет склонность к хроническому течению. В такой ситуации макроорганизм вынужден переключать нагрузку на клеточное звено иммунитета, что ведет к аллергизации организма по типу ГЗТ. Особое значение приобретают активированный макрофаг и естественный киллер, осуществляющие антителозависимую клеточно-опосредованную цитотоксичность, а также gadeТ-лимфоцит.
Кроме перечисленных, на внедрившиеся бактерии воздействует весь арсенал факторов неспецифической резистентности. Среди них важная роль в борьбе с грамположительными микробами принадлежит лизоциму и белкам острой фазы (С-реактивному и маннозосвя-зывающему протеинам).
Напряженность специфического антибактериального иммунитета оценивают в серологических тестах по титру или динамике титра специфических антител, а также состоянию клеточной иммунореактивности (например, по результатам кожно-аллергической пробы).
12.2.2. Особенности противовирусного иммунитета
Иммунная защита макроорганизма при вирусных инфекциях имеет особенности, обусловленные двумя формами существования вируса: внеклеточной и внутриклеточной.
Основными факторами, обеспечивающими противовирусный иммунитет, являются специфические антитела, Т-киллеры, естественные киллеры, интерферон и сывороточные ингибиторы вирусных частиц.
Специфические противовирусные антитела способны взаимодействовать только с внеклеточным вирусом, внутриклеточные структуры прижизненно для них недоступны. Антитела нейтрализуют вирусную частицу, препятствуя ее адсорбции на клетке-мишени, инфицированию и генерализации процесса, а также связывают вирусные белки и нуклеиновые кислоты, которые попадают в межклеточную среду и секреты после разрушения зараженных вирусами клеток. Образовавшиеся иммунные комплексы элиминируются путем иммунного фагоцитоза. Специфическое связывание антител с вирусными белками, экспрессированными на ЦПМ инфицированных клеток, индуцирует цитотоксическую активность естественных киллеров (см. гл. 11, разд. 11.3.1).
Клетки, инфицированные вирусом и приступившие к его репликации, экспрессиру-ют вирусные белки на цитоплазматической мембране в составе молекул антигенов гис-тосовместимости — МНС I класса (см. гл. 10, разд. 10.1.4.2). Это является сигналом для активации Т-киллеров, которые распознают зараженные вирусом клетки и уничтожают их (см. гл. 11, разд. 11.3.2).
Мощным противовирусным действием обладает интерферон (см. гл. 9, разд. 9.2.3.5). Он не действует непосредственно на внутриклеточный вирус, а связывается с рецептором на мембране клетки и индуцирует ферментные системы, подавляющие в ней все биосинтетические процессы.
Сывороточные ингибиторы неспецифически связываются с вирусной частицей и нейтрализуют ее, препятствуя тем самым адсорбции вируса на клетках-мишенях.
Напряженность противовирусного иммунитета оценивают-преимущественно в серологических тестах — по нарастанию титра специфических антител в парных сыворотках в процессе болезни. Иногда определяют концентрацию интерферона в сыворотке крови.
12.2.3. Особенности противогрибкового
иммунитета
Антигены грибов имеют относительно низкую иммуногенность: они практически не индуцируют антителообразование (титры специфических антител остаются низкими), но стимулируют клеточное звено иммунитета. Между тем, основными действующими факторами противогрибкового иммунитета являются активированные макрофаги, которые осуществляют антителозависимую клеточно-опосредованную цитотоксичность грибов.
При микозах наблюдается аллергизация макроорганизма. Кожные и глубокие микозы сопровождаются, как правило, ГЗТ. Грибковые поражения слизистых дыхательных и мочеполовых путей вызывают аллергизацию по типу ГНТ (реакция I типа). Напряженность противогрибкового иммунитета оценивается по результатам кожно-аллергических проб с грибковыми аллергенами.
12.2.4. Особенности иммунитета
при протозойных инвазиях
Противопаразитарный иммунитет изучен слабо. Известно, что паразитарная инвазия сопровождается формированием в макроорганизме гуморального и клеточного иммунитета. В крови определяются специфические антитела классов М и G, которые чаще всего не обладают протективным действием. Однако они активируют антителозависимую клеточно-опосредованную цитотоксичность с участием макрофагов, а в случае внутриклеточного паразитирования — естественных киллеров и gadeТ-лимфоцитов. Паразитарные инвазии сопровождаются аллергизацией макроорганизма — отмечается усиление ГЗТ на протозойные антигены.
Характер противопаразитарного иммунитета определяется структурно-функциональными особенностями паразита и его жизненного цикла при инвазии макроорганизма. Многие паразиты обладают высокой антигенной изменчивостью, что позволяет им избегать действия факторов иммунитета. Например, каждой стадии развития малярийного плазмодия соответствуют свои специфические антигены.
Напряженность противопаразитарного иммунитета оценивается в серологических тестах по титру специфических антител и в кожно-аллергических пробах с протозойным антигеном.
12.2.5. Особенности противоглистного
иммунитета
Ведущую роль в осуществлении иммунной защиты макроорганизма от глистной инвазии играют эозинофилы, которые осуществляют антителозависимую клеточно-опосредован-ную цитотоксичность. Эти клетки «распознают» паразитов, «отмеченных» специфическими IgE или IgA. Активированный эозинофил, дегранулируясь, выделяет ряд токсических субстанций (ферменты, белковые токсины), губительно действующих на гельминты.
Антигены гельминта, связываясь также с рецепторными комплексами тучных клеток слизистой оболочки, вызывают их деграну-ляцию. Экскретированные биологически активные соединения вызывают интенсивную перистальтику, удаляющую паразита или его останки из просвета кишки.
Эозинофилы и тучные клетки синтезируют цитокины и липидные медиаторы, потенцирующие воспалительную реакцию в месте внедрения гельминта. Глистная инвазия сопровождается аллергизацией, в основном, по типу ГЗТ.
12.2.6. Трансплантационный иммунитет
Трансплантационным иммунитетом назы
вают иммунную реакцию макроорганизма,
направленную против пересаженной в него
чужеродной ткани (трансплантата). Знание
механизмов трансплантационного иммуните
та необходимо для решения одной из важней
ших проблем современной медицины — пе
ресадки органов и тканей. Многолетний опыт
показал, что успех операции по пересадке
чужеродных органов и тканей в подавляющем
большинстве случаев зависит от иммунологи
ческой совместимости тканей донора и реци
пиента.
Иммунная реакция на чужеродные клетки и ткани обусловлена тем, что в их составе содержатся генетически чужеродные для организма антигены. Эти антигены, полу-
чившие название трансплантационных или антигенов гистосовместимости (см. гл. 10, разд. 10.1.4.2), наиболее полно представлены на ЦПМ клеток.
Реакция отторжения не возникает в случае полной совместимости донора и реципиента по антигенам гистосовместимости — такое возможно лишь для однояйцовых близнецов. Выраженность реакции отторжения во многом зависит от степени чужеродности, объема трансплантируемого материала и состояния иммунореактивности реципиента.
При контакте с чужеродными трансплантационными антигенами организм реагирует факторами клеточного и гуморального звеньев иммунитета. Основным фактором клеточного трансплантационного иммунитета являются Т-киллеры. Эти клетки после сенсибилизации антигенами донора мигрируют в ткани трансплантата и оказывают на них антителонезависимую клеточно-опосредо-ванную цитотоксичность.
Специфические антитела, которые образуются на чужеродные антигены (гемагглюти-нины, гемолизины, лейкотоксины, цитоток-сины), имеют важное значение в формировании трансплантационного иммунитета. Они запускают антитело-опосредованный цитолиз трансплантата (комплемент-опосредованный и антителозависимая клеточно-опосредован-ная цитотоксичность).
Возможен адоптивный перенос трансплантационного иммунитета с помощью активированных лимфоцитов или со специфической антисывороткой от сенсибилизированной особи интактному макроорганизму.
Механизм иммунного отторжения пересаженных клеток и тканей имеет две фазы. В первой фазе вокруг трансплантата и сосудов наблюдается скопление иммунокомпетент-ных клеток (лимфоидная инфильтрация), в том числе Т-киллеров. Во второй фазе происходит деструкция клеток трансплантата Т-киллерами, активируются макрофагальное звено, естественные киллеры, специфический антителогенез. Возникает иммунное воспаление, тромбоз кровеносных сосудов, нарушается питание трансплантата и происходит его гибель. Разрушенные ткани утилизируются фагоцитами.
В процессе реакции отторжения формируется клон Т- и В-клеток иммунной памяти. Повторная попытка пересадки тех же органов и тканей вызывает вторичный иммунный ответ, который протекает очень бурно и быстро заканчивается отторжением трансплантата.
С клинической точки зрения выделяют острое, сверхострое и отсроченное отторжение трансплантата. Различаются они по времени реализации реакции и отдельным механизмам.
Острое отторжение — это «нормальная» реакция иммунной системы по механизму первичного ответа, которая развивается в течение первых недель или месяцев после трансплантации в отсутствие иммуносупрессивной терапии. В ее основе лежит комплекс всевозможных цитолитических реакций, как с участием антител, так и независимых от них.
Отсроченное отторжение имеет тот же механизм, что и острое. Возникает через несколько лет после операции у пациентов, получавших иммуносупрессивную терапию.
Сверхострое отторжение, или криз отторжения, развивается в течение первых суток после трансплантации у пациентов, сенсибилизированных к антигенам донора, по механизму вторичного иммунного ответа. Основу составляет антительная реакция: специфические антитела связываются с антигенами эндотелия сосудов трансплантата и поражают клетки, активируя систему комплемента по классическому пути. Параллельно инициируется иммунное воспаление и свертывающая система крови. Быстрый тромбоз сосудов трансплантата вызывает его острую ишемию и ускоряет некротизацию пересаженных тканей.
Следовательно, при пересадке органов и тканей во избежание иммунологического отторжения трансплантата необходимо проводить тщательный подбор донора и реципиента по антигенам гистосовместимости.
12.2.7. Иммунитет против новообразований В сложноорганизованном организме, наряду с нормальными физиологическими процессами, направленными на поддержание гомеостаза, с определенной частотой происходят и дезинтегрирующие события, обусловленные ошибками и старением сложноорга-низованной биологической системы. В част-
ности, появляются мутантные и опухолевые клетки.
Мутантные клетки возникают в результате нелетального действия химических, физических и биологических канцерогенов. К последним относятся разнообразные инфекционные агенты — облигатные внутриклеточные паразиты, и, в первую очередь, вирусы. Мутантные клетки отличаются от нормальных метаболическими процессами и антигенным составом, в частности, имеют измененные антигены гистосовместимости. Поэтому они активируют гуморальное и клеточное звенья иммунитета, осуществляющие надзорную функцию. Важную роль в этом процессе играют специфические антитела (запускают комплемент-опосредованную реакцию и антителозависимую клеточно-опос-редованную цитотоксичность) и Т-киллеры, осуществляющие антителонезависимую кле-точно-опосредованную цитотоксичность.
Противоопухолевый иммунитет имеет свои особенности, связанные с низкой иммуногеннос-тью раковых клеток. Эти клетки практически не отличаются от нормальных, ингактных морфологических элементов собственного организма. Специфический антигенный «репертуар» опухолевых клеток также скуден. В число опухольассо-циированных антигенов (см. гл. 10, разд. 10.1.4.3) входит группа раково-эмбриональных антигенов, продукты онкогенов, некоторые вирусные антигены и гиперэкспрессируемые нормальные белки. Слабому иммунологическому распознаванию опухолевых клеток способствует отсутствие воспалительной реакции в месте онкогенеза, а также их иммуносупрессивная активность — биосинтез ряда «негативных» цитокинов be-ТФР и др.), а также экранирование раковых клеток противоопухолевыми антителами.
Механизм противоопухолевого иммунитета до сих пор слабо изучен. Считается, что основную роль в нем играют активированные макрофаги; определенное значение имеют также естественные киллеры. Защитная функция гуморального иммунитета во многом спорная — специфические антитела могут экранировать антигены опухолевых клеток, не вызывая их цитолиза.
Вместе с тем, в последнее время получила распространение иммунодиагностика рака,
которая основана на определении в сыворотке крови раковоэмбриональных и опухоль-ассоциированных антигенов. Таким путем в настоящее время удается диагностировать некоторые формы рака печени, желудка, кишечника и др.
Между состоянием иммунной защиты и развитием новообразований существует тесная связь. Об этом свидетельствует повышенная заболеваемость злокачественными новообразованиями индивидуумов с имму-нодефицитами и престарелых в связи с понижением активности иммунной системы. Иммуносупрессивная химиотерапия также нередко сопровождается пролиферативны-ми процессами. Поэтому в лечении опухолей нашли применение иммуномодуляторы (интерлейкины, интерфероны), а также адъ-юванты (мурамилдипептиды, вакцина БЦЖ и др.).
12.2.8. Иммунология беременности
Беременность напрямую сопряжена с феноменом иммунологической толерантности. В организме беременной формируется целый комплекс факторов, обеспечивающих ареактивность иммунной системы матери к гетероантигенам плода. Во-первых, синцити-отрофобласт плаценты «невидим» для рецепторов иммунокомпетентных клеток. Он не экспрессирует классические молекулы гис-тосовметимости, а только неполиморфные, трудно распознаваемые. Во-вторых, синцити-отрофобласт синтезирует иммуносупрессор-ные цитокины (ИЛ-4, -10, (3-ТФР). В-третьих, в децидуальной оболочке беременной матки располагаются CD16~CD56MHoro естественные киллеры (см. гл. 11, разд. 11.3.2), которые устраняют активированные аллоантигена-ми плода лимфоциты путем индукции у них апоптоза.
Механизмы иммунологической толерантности во время беременности чрезвычайно активны. Известно, например, что самки животных в этот период не отторгают трансплантат отца ее эмбриона. Однако после родоразрешения (или абортирования плода) толерантность быстро угасает, а надзорная функция иммунной системы быстро восстанавливается, и трансплантат отторгается.
Дата добавления: 2015-11-14; просмотров: 76 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Особенности местного иммунитета | | | Иммунный статус и его оценка |