Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Гипотеза Ампера

Последовательное соединение конденсаторов | Активные диэлектрики | Потенциальная энергия пластин конденсатора | Электрический ток в растворах и расплавах электролитов | Люминесцентная лампа | Электровакуумный диод | Электронно-лучевая трубка | Сверхпроводимость | ПОЛУПРОВОДНИКИ | Полупроводниковый диод |


Читайте также:
  1. Атомная гипотеза
  2. Гипотеза гендерного сходства
  3. Гипотеза исследования.
  4. Глава вторая. Гипотеза бога
  5. Действие магнитного поля на проводник с током. Закон Ампера. Единицы измерения магнитной индукции.
  6. Закони Ампера, Лоренца та Біо-Савара-Лапласа

Причина вследствие которой тела обладают магнитными свойствами была найдена французским ученым Анри Ампером:

магнитные свойства вещества можно объяснить циркулирующими внутри него замкнутыми токами.

Согласно гипотезе Ампера внутри молекул и атомов циркулируют элементарные электрические токи. Если плоскости, в которых циркулируют эти тока, расположены беспорядочно по отношению друг к другу вследствие теплового движения, то их действия взаимно компенсируются и тело не обнаруживает магнитных свойств.

В намагниченном состоянии элементарные тока ориентированы так, что их действия складываются.

 

Магнитные свойства любого вещества определяются замкнутыми электрическими токами внутри него.

 

Электромагнитное взаимодействие зависит от среды, в которой находятся заряды.

Если около большой катушки подвесить маленькую, то она отклонится. Если в большую вставить железный сердечник, то отклонение увеличится. Это изменение показывает, что индукция изменяется при внесении сердечника.

 

Магнитная индукция в среде складывается из индукции внешнего поля и собственной индукции вещества:

 

Отношение характеризующее магнитные свойства среды, получило название магнитной проницаемости среды.

Обозначение m. Безразмерная величина

 

В однородной среде магнитная индукция равна:

где m — магнитная проницаемость данной среды безразмерная величина, показывающая во сколько раз магнитная индукция в данной среде, больше чем в вакууме.

(Формула справедлива только для однородной среды, заполняющей все пространство, или ля случаев особой симметрии, например для однородного стержня внутри соленоида.

Для тела произвольной формы зависимость между и будет гораздо сложнее и определяться формой тела и его ориентацией по отношению к )

 

Микроскопические токи под действием внешнего магнитного поля определенным образом ориентируются: чем больше внешняя индукция В0, тем больше индукция собственного магнитного поля среды:

χ («хи») – магнитная восприимчивость среды

(магнитная проницаемость среды μ = 1 + χ)

 

Вектор собственной магнитной индукции среды может быть как сонаправлен с вектором магнитной индукции внешнего поля, так и противоположен ему.

 

Разная магнитная восприимчивость веществ определяет различие их магнитных свойств.

 

В зависимости от магнитных свойств веществ различают:

- парамагнетики

- диамагнетики

- ферромагнетики

 

Парамагнетиками называются вещества, которые создают слабое магнитное поле, по направлению совпадающее с внешним полем.

Магнитная проницаемость наиболее сильных парамагнетиков мало отличается от единицы: 1,00036- у платины и 1,00034- у жидкого кислорода.

 

В атомах парамагнетиков источником собственного магнитного поля являются микротоки, обусловленные вращением валентного электрона вокруг собственной оси (или spin)

В силу хаотического расположения атомов результирующая собственная индукция парамагнетиков в отсутствии внешнего магнитного поля равна нулю.

 

При помещении парамагнетика во внешнее магнитное поле элементарные витки с током (вращающиеся вокруг своей оси электроны) начинают выстраиваться так, чтобы направление их собственной индукции совпало с индукцией внешнего поля. Поэтому результирующая индукция в парамагнетике становится отличной от нуля и сонаправленной с индукцией внешнего поля:

= Σ ≠ 0, ↑↑

Магнитное поле в парамагнетике усиливается по сравнению с приложенным к нему внешним магнитным полем.

 

Нагревание парамагнетика приводит к дезориентации спинов и уменьшению собственного магнитного поля, а следовательно к уменьшению его магнитной проницаемости μ.

 

Диамагнетиками называются вещества, которые создают поле, ослабляющее внешнее магнитное поле.

Магнитная проницаемость диамагнетиков отличается от единицы не более чем на десятитысячные доли.

 

Диамагнетик – вещество, у которого вектор индукции собственного магнитного поля, направленный противоположно вектору магнитной индукции внешнего (намагничивающего) поля, значительно меньше его по модулю:

↑↓ , Bс << B0

Для диамагнетиков χ < 0, при этом │χ│ <<1

 

Диамагнетиками являются многие газы(водород, гелий, азот, углекислый газ), плазма, металлы (золото, серебро, висмут, свинец), стекло, вода, соль, резина, алмаз, дерево, пластик и т.д.

 

Ферромагнетики - вещества, значительно усиливающие внешнее магнитное поле.

 

Ферромагнетик – вещество, у которого вектор индукции собственного магнитного поля, сонаправленный с вектором магнитной индукции внешнего (намагничивающего) поля, значительно превышает его по модулю:

↑↑ , Bс >> B0

Для ферромагнетиков χ > 0, при этом │χ│>> 1

 

Ферромагнетики – железо, кобальт, никель, их сплавы, редкоземельные элементы.

 

 

Ферромагнетизм объясняется магнитными свойствами электрона. Электрон является движущимся зарядом, и поэтому обладает собственным магнитным полем. В некоторых кристаллах существуют условия зля параллельной ориентации магнитных полей электронов. В результате этого внутри кристалла ферромагнетика возникают намагниченные области, называемы доменами.

 

В атомах ферромагнетиков собственная индукция создается не только валентными электронами, но и электронами внутренних электронных оболочек. Это заметно увеличивает результирующую собственную индукцию.

В результате взаимодействия атомов ферромагнетика энергетически выгодной оказывается параллельная ориентация спинов всех атомов в пределах некоторой области, называемой доменом (domain – владение) Домен с параллельной ориентацией спинов обладает минимальной энергией.

 

В поликристаллах ориентация спинов в различных доменах хаотична, результирующая собственная индукция в ферромагнетике в отсутствие внешнего магнитного поля равна нулю.

 

Магнитная проницаемость ферромагнетиков не постоянна. Она зависит от вектора магнитной индукции.

 

С увеличением внешнего магнитного поля домены упорядочивают свою ориентацию.

При некотором значении индукции наступает полное упорядочение ориентации доменов и наступает магнитное насыщение.

 

При выводе ферромагнетика из внешнего магнитного поля не все домены теряют свою ориентацию, и тело становится постоянным магнитом.

 

Зависимость собственной индукции от индукции внешнего магнитного поля характеризуется кривой намагничивания.

 

При уменьшении индукции внешнего поля после достижения насыщения вновь образуются домены, однако собственная магнитная индукция некоторых из них остается ориентированной по внешнему полю. Это происходит от того, что такие домены не могут развернуться в прежнее положение из-за взаимодействия с соседями. Даже при полном выключении внешнего магнитного поля ферромагнетик остается намагниченным.

 

Остаточная намагниченность - собственная магнитная индукция в ферромагнетике в отсутствии внешнего магнитного поля.

 

Магнито-жесткие ферромагнетики – ферромагнетики, у которых остаточная намагниченность велика.

Особенно велика остаточная намагниченность у сплава альника (Fe, Co, Ni, Al, Cu)

 

Магнито-мягкие ферромагнетики – ферромагнетики, у которых остаточная намагниченность мала. (Чистое железо, некоторые сорта стали)

 

Для полного размагничивания образца следует изменить направление вектора индукции внешнего магнитного поля на противоположное остаточной намагниченности.

 

Коэрцитивная (задерживающая) сила – магнитная индукция внешнего поля, необходимая для размагничивания образца.

 

Замкнутая кривая намагничивания и размагничивания ферромагнетика называется петлей гистерезиса (греч. hysteresis – отставание)

Форма петли – важнейшая характеристика ферромагнитного материала. Чем шире петля, тем труднее размагнитить образец.

Исчезновение ферромагнитных свойств вещества вследствие нарушения ориентации доменов может происходить при механическом воздействии на образец, например, при ударе.

Упорядоченность ориентации доменов может быть нарушена тепловыми колебаниями атомов.

Температура Кюри (1894 Пьер Кюри) - - температура, при превышении которой исчезают ферромагнитные свойства вещества.

Критическая температура, выше которой происходит переход вещества из ферромагнитного в парамагнитное состояние.

 

Если сильно нагреть намагниченный гвоздь, то он потеряет способность притягивать к себе железные предметы.

Температура Кюри для железа 753-768 °С, для никеля 365 °С, а для кобальта 1000°С. Существуют ферромагнитные сплавы, у которых температура Кюри меньше 100°С.

 


Дата добавления: 2015-11-14; просмотров: 204 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Генератор на транзисторе| Применение ферромагнетиков

mybiblioteka.su - 2015-2025 год. (0.012 сек.)