Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Геометрическое ослабление излучений.

А. Определение удельного сопротивления грунта. | Грунта и глубины заложения заземлителей | Общие сведения | Порядок выполнения работы | Порядок выполнения работы | Воздействие лазерного излучения на человека | Классификация лазеров по степени опасности | Порядок выполнения работы | Общие сведения | Биологическое воздействие излучений. |


Читайте также:
  1. Биологическое воздействие излучений.
  2. Геометрическое определение вероятности
  3. Гипергеометрическое распределение
  4. Единицы измерения радиоактивности, характеризующие степень воздействия ионизирующих излучений.
  5. Источники ионизирующих излучений.
  6. Ослабление влияния коррупции на политику

Для точечных источников поток излучения, кроме указанной выше закономерности ослабления при прохождении в веществе, будет ослабляться за счет геометрической расходимости, подчиняющейся закону обратных квадратов

,  

где I - мощность источника, R - расстояние от источника.

Геометрически источники могут быть точечными и протяженными. Протяженные источники представляют собой суперпозицию точечных источников и могут быть линейными, поверхностными или объемными. Физически точечным можно считать такой источник, максимальные размеры которого много меньше расстояния до точки детектирования и длины свободного пробега в материале источника.

Для точечного изотропного источника определяющую роль в ослаблении плотности излучения в воздухе играет геометрическое расхождение. Ослабление за счет поглощения в воздухе, например, для источника с энергией, равной 1 МэВ на расстоянии 3 м, составляет 0,2%.

Регистрация излучений. Оборудование и порядок исследований.

 

Применяемые в области радиационного контроля приборы по своему назначению подразделяются на дозиметры, радиометры и спектрометры. Дозиметры служат для измерения поглощенной дозы ионизирующего излучения или ее мощности. Радиометры служат для измерения плотности потока излучений и активности радионуклидов. Спектрометры служат для измерения распределения излучений по энергии частиц или фотонов.

Основа регистрации любого вида излучений – его взаимодействие с веществом детектора. Под детектором понимается устройство, на вход которого поступают ионизирующее излучение и на выходе появляются регистрируемый сигнал. Тип детектора определяется природой сигнала - при световом сигнале детектор называется сцинтилляционным, при импульсах тока - ионизационным, при появлении пузырьков пара - пузырьковая камера, а при наличии капелек жидкости - камера Вильсона. Вещество, в котором происходит преобразование энергии ионизирующего излучения в сигнал, может быть газом, жидкостью или твердым телом, что и дает соответствующее название детекторам: газовые, жидкостные и твердотельные.

В данной работе применяется прибор, совмещающий функции дозиметра и радиометра - переносной геологоразведочный СРП-68-01. Прибор состоит из выносного блока детектирования БДГЧ-01, переносного пульта, который содержит схему измерения и стрелочный прибор.

В СРП-68-01 используется сцинтилляционный детектор на основе неорганического монокристалла натрий-йод (NaI). Принцип работы детектора заключается в следующем. Излучение, взаимодействуя с веществом сцинтиллятора, создает в нем вспышки света. Фотоны света попадают на фотокатод и выбивают из него фотоэлектроны. Ускоренные и умноженные электроны собираются на аноде. Каждому электрону, поглощенному в сцинтилляторе, соответствует импульс тока в анодной цепи фотоэлектронного умножителя, следовательно, измерению может подлежать как среднее значение анодного тока, так и число импульсов тока в единицу времени. В соответствии с этим различают токовый (интегрирующий) и счетный режимы сцинтилляционного дозиметра.

Стрелочный прибор в измерительном комплексе позволяет снимать значения для двух режимов работы дозиметра:

- мощность экспозиционной дозы, мкР/ч;

- средняя скорость счета импульсов тока, имп/с.

В качестве источника ионизирующего излучения в работе используется контрольная калибровочная метка, которая содержит радионуклид 60Co с энергией гаммa - квантов:1.17 МэВ и 1.37 МэВ.

Экспериментальные исследования выполняются на лабораторном стенде, основу которого составляет сцинтилляционный геологоразведочный прибор СРП-68-01. Схема стенда представлена на рис. 1 и 2.

Рис.1. Блок-схема установки

Здесь: 1 - переносной пульт измерения; 2 –измерительная линейка; 3 –исследуемые материалы, 4 - радиоактивный источник; 5 -трубка детектора; 6 - защитный экран.

Рис. 2. Передняя панель измерительного прибора.

Здесь: 1 - переключатель рода работ; 2 - переключатель пределов и режимов измерений; 3 - измерительная шкала пересчетного прибора; 4 - регулятор уровня звукового сигнала.

Следует заметить, что число актов радиационного распада и число зарегистрированных радиометром импульсов тока являются случайными величинами, подчиняющимися закону Пуассона. По этой причине каждое измерение следует повторять пять раз с интервалом в минуту и за результат принимать среднее значение.

Для подготовки установки к измерениям необходимо:

· включить пульт измерения путем установки переключателя рода работ (п.1 на рис.2) в положение «5»;

· освободить измерительное окно на радиоактивном источнике, сняв защитный экран.


Дата добавления: 2015-11-14; просмотров: 77 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Защитные мероприятия.| Обработка результатов опытов и расчетные задания

mybiblioteka.su - 2015-2024 год. (0.006 сек.)