Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

список цитируемой Литературы

Читайте также:
  1. Ex.24. Продолжите список существительных (из уроков 1-2), с которыми могут сочетаться подчёркнутые прилагательные.
  2. IV. Выдача уведомлений о внесении ребенка в список детей, подлежащих приему в МДОО
  3. NB! Питьевой режим: 2 литра жидкости в сутки (см. список разрешенных напитков).
  4. Quot;Стаття 581. Список присяжних
  5. VI.Список використаних джерел
  6. Анализ специальной литературы, состояния изученности и разработки вопроса и актуальность темы исследования
  7. Антология древнерусской литературы

[1] Здесь и далее все потенциалы приведены относительно обратимого водородного электрода (ОВЭ)

[2] Объяснить что такое «степень использования катализатора» в сноске


[1]. Vielstich W, Lamm A, Gasteiger HA (eds). Handbook of fuel cells. Fundamentals, technology and applications. Wiley, Chichester, 2003

[2]. H.A. Gasteiger et al. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs// Applied Catalysis B: Environmental. 2005. № 56, p 9–35

[3]. L. Dubau et al. Further insights into the durability of Pt3Co/C electrocatalysts: Formation of “hollow” Pt nanoparticles induced by the Kirkendall effect// Electrochimica Acta. 2011 № 56, p 10658– 10667

[4]. Christopher E. Carlton et al. Sub-Nanometer-Resolution Elemental Mapping of “Pt3Co” Nanoparticle Catalyst Degradation in Proton-Exchange Membrane Fuel Cells// J. Phys. Chem.Lett. 2012. №3, p 161−166

[5]. Vojislav R. Stamenkovic et al. Effect of Surface Composition on Electronic Structure, Stability, and Electrocatalytic Properties of Pt-Transition Metal Alloys: Pt-Skin versus Pt-Skeleton Surfaces// JACS. 2006. № 128, p 8813-8819

[6]. T. Toda, H. Igarashi, H. Uchida, M. Watanabe. Enhancement of the Electroreduction of Oxygen on Pt Alloys with Fe, Ni, and Co // J. Electrochem. Soc. 1999. №146, p 3750-3756

[7]. Gustavo E. Ramirez-Caballero, Perla B. Balbuena. Surface segregation of core atoms in core–shell structures// Chem. Phys. Lett. 2008 № 456, p 64-67

[8]. L. Dubau et al. Nanoscale compositional changes and modification of the surface reactivity of Pt3Co/C nanoparticles during proton-exchange membrane fuel cell operation// Electrochimica Acta. 2010. №56, p 776-783

[9]. L. Dubau et al. Durability of Pt3Co/C Cathodes in a 16 Cell PEMFC Stack: Macro/Microstructural Changes and Degradation Mechanisms// J. Electrochem. Soc. 2010. № 157, p B1887-B1895

[10]. F. Maillard et al. Durability of Pt3Co/C nanoparticles in a proton-exchange membrane fuel cell: Direct evidence of bulk Co segregation to the surface// Electrochemistry Communications. 2010. №12, p 1161-1164

[11]. Chen, S.; Gasteiger, H. A.; Hayakawa, K.; Tada, T.; Shao-Horn, Y. Platinum-Alloy Cathode Catalyst Degradation in Proton Exchange Membrane Fuel Cells: Nanometer-Scale Compositional and Morphological Changes// J. Electrochem. Soc. 2010. № 157, p A82−A97.

[12]. K.J.J. Mayrhofer et al. Measurement of oxygen reduction activities via the rotating disc electrode method: From Pt model surfaces to carbon-supported high surface area catalysts// Electrochimica Acta. 2008. № 53, p 3181-3188

[13]. J. Kaiser et al. Influence of carbon support on the performance of platinum based oxygen reduction catalysts in a polymer electrolyte fuel cell// J. Appl. Electrochem. 2007. № 37, p 1429–1437

[14]. H.-F. Cui et al. Electrocatalytic reduction of oxygen by a platinum nanoparticle/carbon nanotube composite electrode // Journal of Electroanalytical Chemistry. 2005. № 577, p 295-302

[15]. Carol A. Bessel et al. Graphite Nanofibers as an Electrode for Fuel Cell Applications // J. Phys. Chem. B. 2001. № 6, p 1115-1118

[16]. Joo SH, Choi SJ, Oh I, Kwak J, Liu Z, Terasaki O, Ryoo R. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. // Nature. 2001. № 412, p 169-172

[17]. Jie Ding et al. Platinum and platinum–ruthenium nanoparticles supported on ordered mesoporous carbon and their electrocatalytic performance for fuel cell reactions // Electrochimica Acta. 2005. № 50, p 3131-3141

[18]. Yermakov Yu.I., Startsev A.N., Shkuropat S.A., Plaksin G.V. et al. Carbon-supported sulfide bimetallic catalysts for hydrodesulfurization // React. Kinet. Catal. Lett. 1988. №1, p 65-70.

[19]. O.V. Cherstiouk, A.N. Simonov, N.S. Moseva, S.V. Cherepanova, P.A. Simonov, V.I. Zaikovskii, E.R. Savinova. Microstructure effects on the electrochemical corrosion of carbon materials and carbon-supported Pt catalysts // Electrochimica Acta. 2010. Vol. 55, p 8453-8460

[20]. U.A. Paulus et al. Oxygen reduction on a high-surface area Pt:Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study // Journal of Electroanalytical Chemistry. 2001. № 495, p 134-145

[21]. N. P. Lebedeva et al. Sibunit Carbon-Based Cathodes for Proton-Exchange-Membrane Fuel Cells // FUEL CELLS. 2009. № 4, p 439-452

[22]. Б. Б. Дамаскин, О. А. Петрий, Г. А. Цирлина, Электрохимия, Москва, 2006.

[23]. N. Wakabayashi et al. Temperature-dependence of oxygen reduction activity at a platinum electrode in an acidic electrolyte solution investigated with a channel flow double electrode // Journal of Electroanalytical Chemistry. 2005. № 574, p 339–346

[24]. Г. К. Боресков, Гетерогенный катализ, Наука, Москва, 1986г.

[25]. D. Thompsett, Pt alloys as oxygen reduction catalysts, in: W. Vielstich, H. Gasteiger, A. Lamm (Eds.), Handbook of Fuel Cells – Fundamentals, Technology and Applications, vol. 3, Wiley, Chichester, UK, 2003, p. 467 (Chapter 37).

[26]. Minhua Shao, Amra Peles, Krista Shoemaker. Electrocatalysis on Platinum Nanoparticles: Particle Size Effect on Oxygen Reduction Reaction Activity. // Nano Lett.. 2011. № 11, p 3714–3719

[27]. Y. Bing, H. Liu, L. Zhang, D. Ghosh, J. Zhang. Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction // Chem. Soc. Rev. 2010. № 39, p 2184–2202

[28]. U.A. Paulus et al. Oxygen reduction on a high-surface area Pt:Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study // Journal of Electroanalytical Chemistry. 2001. № 495, p 134–145

[29]. K. Kinoshita, Electrochemical Oxygen Technology, John Wiley & Sons, New Vork, 1992

[30]. Nenad Markovic, Hubert Gasteiger, Philip N. Ross. Kinetics of Oxygen Reduction on Pt(hkl) Electrodes: Implications for the Crystallite Size Effect with Supported Pt Electrocatalysts // J. Electrochem. Soc. 1997. № 5, p 1591-1597

[31]. S.V. Tsybulya et al. Study of the Real Structure of Silver Supported Catalysts of Different Dispersity. // Journal of Catalysis. 1995. № 154, p 194-200

[32]. Alexei N. Gavrilov, Elena R. Savinova. On the influence of the metal loading on the structure of carbon-supported PtRu catalysts and their electrocatalytic activities in CO and methanol electrooxidation. // Phys. Chem. Chem. Phys. 2007. № 9, p 5476–5489

[33]. O.V. Cherstiouk et al. Influence of structural defects on the electrocatalytic activity of platinum. // J. Solid State Electrochem. 2008. № 12, p 497–509.

[34] O. V. Cherstiouk et al., E.Acta 48 (2003) 3851

[35] K.J.J. Mayrhofer et al., E.Acta 54 (2009) 5018

[36] E.E. Said-Galiyev et al., JSSE 15 (2011) 623

[37] J.M. Sieben, Mat. Chem. Phys. 128 (2011) 243

[38] G. Wang et al., Int. J. Hydrogen Energy 36 (2011) 3322

[39]. J.M. Sieben et al., JSSE 14 (2010) 1555

[40]. F. Gloaguen et al. Platinum electrodeposition on graphite: electrochemical study and STM imaging. // Electrochimica Acta. 1999. № 44, p 1805-1816

[41]. O.V. Cherstiouk et al. Platinum electrodeposits on glassy carbon: the formation mechanism, morphology, and adsorption properties. // Russ J Electrochem. 2000. № 36, p 741-751

[42]. L.M. Plyasova et al. Electrodeposited platinum revisited: Tuning nanostructure via the deposition potential. // Electrochimica Acta. 2006. № 51, p 4477–4488


Дата добавления: 2015-11-16; просмотров: 53 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Влияние размера и наноструктуры активного компонента| Вычисление дирекционных углов, румбов сторон полигона и горизонтальных проложений линий

mybiblioteka.su - 2015-2025 год. (0.007 сек.)