Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Репрезентативность тестовых норм. Параметры нормального распределения и их подсчет.



Читайте также:
  1. Amp;. 2 ОБЩИЕ И СПЕЦИФИЧЕСКИЕ ЗАКОНОМЕРНОСТИ РАЗВИТИЯ ЛИЧНОСТИ 'НОРМАЛЬНОГО И УМСТВЕННО ОТСТАЛОГО РЕБЕНКА
  2. IV. Эмиссия дополнительных акций акционерного общества, размещаемых путем распределения среди акционеров
  3. V. ЗМІЦНЕННЯ ТА РАЦІОНАЛЬНЕ ВИКОРИСТАННЯ НАВЧАЛЬНО-МАТЕРІАЛЬНОЇ БАЗИ. ДОТРИМАННЯ ТЕХНІКИ БЕЗПЕКИ ТА САНІТАРНО-ГІГІЄНІЧНИХ НОРМ.
  4. Аксиоима нормальности распределения психологических характеристик, как основа стандартизации теста.
  5. Алгоритмы распределения памяти
  6. Анализ распределения детей по группам здоровья имеет значение
  7. Банк тестовых заданий

Любые тестовые заключения при использовании статистических тестовых норм являются относительными. Они зависят от той выборки, на которой производилась стандартизация теста. То, насколько выборка стандартизации позволяет применять тест на широкой популяции, называется РЕПРЕЗЕНТАТИВНОСТЬЮ тестовых норм— третье важнейшее психометрическое свойство теста.

Например, если тест проходил стандартизацию на студентах, то перед его применением на школьниках следует вначале произвести РЕСТАНДАРТИЗАЦИЮ), то есть снова собрать тестовые нормы на представительной выборке, сформированной именно из школьников. В противном случае диагностические выводы будут производиться по неадекватным тестовым нормам и будут неточны и неверны.

Проверка репрезентативности тестовых норм осуществляется с помощью анализа так называемого распределения частот тестовых баллов. Одним из простейших методов является проверка нормальности этого распределения. Более сложный и универсальный подход предполагает сравнение двух распределений, построенных для двух случайных половин выборки стандартизации. Если два этих распределения оказываются практически тождественными, то можно говорить о репрезентативности тестовых норм.

 

Операции по анализу распределения тестовых баллов, построению тестовых норм и проверке их репрезентативности. Перечислим действия, которые последовательно должен произвести психолог при построении тестовых норм.

1. Сформировать выборку стандартизации (случайную или стратифицированную по какому-либо параметру) из той популяции, на которой предполагается применять тест. Провести на каждом испытуемом из выборки тест в сжатые сроки (чтобы устранить иррелевантный разброс, вызванный внешними событиями, происшедшими за время обследования).

2. Произвести группировку сырых баллов с учетом выбранного интервала квантования (интервала равнозначности). Интервал опре­деляется величиной W/m, где W=x max — х max; m - количество интервалов равнозначности (градаций шкалы).

3. Построить распределение частот тестовых баллов (для заданных интервалов равнозначности) в виде таблицы и в виде соответ­ствующих графиков гистограммы и кумуляты.

4. Произвести расчет среднего арифметического значения и стандартного отклонения, а также асимметрии и эксцесса с помощью компьютера. Проверить гипотезы о значимости асимметрии и эксцесса. Сравнить результаты проверки с визуальным анализом кривых распределения.

5. Произвести проверку нормальности одного из распределений с помощью критерия Колмогорова (при n < 200 с помощью более мощ­ных критериев) или произвести процентильную нормализацию с переводом в стандартную шкалу, а также линейную стандартизацию и сравнить их результаты (с точностью до целых значений стандартных баллов).

6. Если совпадения не будет - нормальность отвергается; в этом случае произвести проверку устойчивости распределения расщепле­нием выборки на две случайные половины. При совпадении нормализованных баллов для половины и для целой выборки можно счи­тать нормализованную шкалу устойчивой.

7. Проверить однородность распределения по отношению к варьированию заданного популяционного признака (пол, профессия и т. п.) с помощью критерия Колмогорова. Построить в совмещенных координатах графики гистограммы и кумуляты для полной и частной вы­борок. При значимых различиях разбить выборку на разнородные подвыборки.

8. Построить таблицы процентильных и нормализованных тестовых норм (для каждого интервала равнозначности сырого балла). При наличии разнородных подвыборок для каждой из них должна быть своя таблица.

9. Определить критические точки (верхнюю и нижнюю) для доверительных интервалов (на уровне Р < 0,01) с учетом стандартной ошибки в определении среднего значения.

10. Обсудить конфигурацию полученных распределений с учетом предполагаемого механизма выполнения того или иного теста.

11. В случае негативного результата: отсутствия устойчивых норм для шкалы с заданным числом градаций (с заданной точностью прогноза критериальной деятельности) - осуществить обследование более широкой выборки или отказаться от использования, данного теста.


Дата добавления: 2015-07-11; просмотров: 108 | Нарушение авторских прав






mybiblioteka.su - 2015-2025 год. (0.007 сек.)