Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Механическая вентиляция. В системах механической вентиляции движение воздуха осуществляется вентиляторами и

Назначение и классификация систем вентиляции | Естественная вентиляция | Местная вентиляция | Очистка воздуха от вредных веществ | Кондиционирование воздуха | Эффективность эксплуатации вентиляционных систем |


Читайте также:
  1. А) факторов физической природы (механическая травма, ионизирующая радиация, ультразвук, температура);
  2. Вентиляция
  3. Вентиляция
  4. Вентиляция
  5. Вербальная механическая
  6. Водоснабжение, канализация, отопление и вентиляция
  7. Глава VI. МЕХАНИЧЕСКАЯ ЖЕЛТУХА

В системах механической вентиляции движение воздуха осуществляется вентиляторами и в некоторых случаях эжекторами.

3.1 Приточная вентиляция. Установки приточной вентиляции обычно состоят из следующих элементов (рис.4):

 

 

Рис. 4. Механическая вентиляция

Воздухозаборного устройства (воздухоприемника) 1 для забора чистого воздуха, устанавливаемого снаружи здания в тех местах, где содержание вредных веществ минимально (или они отсутствуют вообще); воздуховодов 2, по которым воздух подается в помещение; наиболее часто воздуховоды делаются металлическими, реже – бетонными, кирпичными, шлакоалебастровыми и т.п; фильтров 3 для очистки воздуха от пыли; калориферов 4, где воздух нагревается (наибольшее распространение получили калориферы, в которых теплоносителем является горячая вода или пар; используются также и электрокалориферы); вентилятора 5; приточных отверстий или насадков 6, через которые воздух попадает в помещение (воздух может подаваться сосредоточенно или равномерно по помещению); регистрирующих устройств, устанавливаемых в воздухоприемном устройстве и на ответвлениях воздуховодов.

Фильтр, калорифер и вентилятор обычно устанавливают в одном помещении, в так называемой вентиляционной камере. Воздух подается в рабочую зону, причем скорости выхода воздуха ограничены допустимым шумом и подвижностью воздуха на рабочем месте.

3.2. Вытяжная вентиляция. Установки вытяжной вентиляции состоят (рис.4, б) из вытяжных отверстий или насадков 7, через которые воздух удаляется из помещения; вентилятора 5, воздуховодов 2; устройства для очистки воздуха от пыли или газов 8, устанавливаемого в тех случаях, когда выбрасываемый воздух необходимо очищать с целью обеспечения нормативных концентраций вредных веществ в выбрасываемом воздухе и в воздухе населенных мест, устройства для выброса воздуха (вытяжной шахты) 9, которое должно быть расположено на 1 – 1,5 м выше конька крыши.

При работе вытяжной системы чистый воздух поступает в помещение через неплотности в ограждающих конструкциях. В ряде случаев это обстоятельство является серьезным недостатком данной системы вентиляции, так как неорганизованный приток холодного воздуха (сквозняки) может вызвать простудные заболевания.

3.3. Приточно-вытяжная вентиляция. В этой системе воздух подается в помещение приточной вентиляцией, а удаляется вытяжной вентиляцией (рис. 4, а и б), работающими одновременно. Место расположения приточных и вытяжных воздуховодов, отверстий и насадков, количество подаваемого и вытягиваемого воздуха выбирается с учетом требований, предъявляемых к системе вентиляции.

Место для забора свежего воздуха выбирается с учетом направления ветра, с наветренной стороны по отношению к выбросным отверстиям, вдали от мест загрязнений.

Приточно-вытяжная вентиляция с рециркуляцией (рис. 4,в) характерна тем, что воздух, отсасываемый из помещения 10 вытяжной системой, частично повторно подают в это помещение через приточную систему, соединенную с вытяжной системой воздуховодом 11. Регулировка количества свежего, вторичного и выбрасываемого воздуха производится клапанами 12. В результате такой системы вентиляции достигается экономия расходуемой теплоты на нагрев воздуха в холодное время года и на его очистку.

Для рециркуляции разрешается использовать воздух помещений, в которых отсутствуют выделения вредных веществ или выделяющиеся вещества относятся к 4-му классу опасности, причем концентрация этих веществ в подаваемом в помещение воздухе не превышает 0,3 q пдк.

Кроме того, применение рециркуляции не допускается, если в воздухе помещений содержатся болезнетворные бактерии, вирусы, имеются резко выраженные неприятные запахи.

Вентиляторы – это воздуходувные машины, создающие определенное давление и служащие для перемещения воздуха при потерях давления в вентиляционной сети не более кПа. Наиболее распространенными являются осевые и радиальные (центробежные) вентиляторы.

Осевой вентилятор (рис. 5,а) представляет собой расположенное в цилиндрическом кожухе лопаточное колесо, при вращении которого поступающий в вентилятор воздух под действием лопаток перемещается в осевом направлении. Это наиболее простая конструкция осевого вентилятора. Широко применяются более сложные вентиляторы, снабженные направляющими и спрямляющими аппаратами. Преимуществами осевых вентиляторов являются простота конструкции, возможность эффективного регулирования производительности в широких пределах посредством поворота лопаток колеса, большая производительность, реверсивность работы. К недостаткам относятся относительно малая величина давления и повышенный шум. Чаще всего применяют эти вентиляторы при малых сопротивлениях вентиляционной сети (примерно до 200 Па), хотя возможно использование этих вентиляторов при больших сопротивлениях (до 1 кПа).

 

Рис. 5. Вентиляторы

 

Радиальный (центробежный) вентилятор (рис. 5) состоит из спирального корпуса 1 с размещенными внутри лопаточным колесом 2, при вращении которого воздух, поступающий через входное отверстие 3, попадает в каналы между лопатками колеса и под действием центробежной силы перемещается по этим каналам, собирается в корпусе и выбрасывается через выпускное отверстие 4.

В зависимости от развиваемого давления вентиляторы делят на следующие группы: низкого давления – до 1кПа (рис. 5,в); среднего давления – 1 – 3 кПа; высокого давления - - 12 кПа.

Вентиляторы низкого давления и среднего давления применяют в установках общеобменной и местной вентиляции, кондиционирования воздуха и т.п. Вентиляторы высокого давления используют в основном для технологических целей, например, для дутья в вагранки.

Перемещаемый вентиляторами воздух может содержать самые разнообразные примеси в виде пыли, газов, паров, кислот и щелочей, а также взрывоопасные смеси. Поэтому в зависимости от состава перемещаемого воздуха вентиляторы изготовляют из определенных материалов и различной конструкции:

а) обычного использования для перемещения чистого или малозапыленного воздуха (до 100 мг/м3) с температурой не выше 80ºС; все части таких вентиляторов изготовляют из обычных сортов стали;

б) антикоррозионного исполнения – для перемещения агрессивных сред (пары кислот, щелочей); в этом случае вентиляторы изготовляют из стойких против этих сред материалов – железохромистой и хромникелевой стали, винипласта и т.д;

в) искрозащитного исполнения – для перемещения взрывоопасных смесей, например, содержащих водород, ацетилен и т.д.; основное требование, предъявляемое к таким вентиляторам, – полное исключение искрения при их работе (вследствие ударов или трения), поэтому колеса, корпуса и входные патрубки вентиляторов изготовляют из алюминия или дюралюминия; участок вала находящийся в потоке взрывоопасной смеси, закрывают алюминиевыми колпаками и втулкой, а в месте прохода вала через кожух устанавливают сальниковое уплотнение;

г) пылевые – для перемещения пыльного воздуха (содержание пыли более 100 мг/м3); рабочие колеса вентиляторов изготовляют из материалов повышенной прочности, они имеют мало (4–8) лопаток.

По типу привода вентиляторы выпускают с непосредственным соединением с электродвигателем (колесо вентилятора находится на валу электродвигателя или вал колеса соединен с валом электродвигателя при помощи соединительной муфты) и с клиноременной передачей (на валу колеса есть шкив). Радиальные вентиляторы бывают правого и левого вращения. Вентилятор считается правого вращения, когда колесо вращается по часовой стрелке (если смотреть со стороны, противоположной входу).

В зависимости от конкретных условий работы каждой вентиляционной установки выбирают привод вентилятора и направление вращения колеса, которое в любом случае будет правильным, если направлено по ходу разворота спирали кожуха.

В настоящее время промышленность выпускает различные типы осевых (МЦ, ЦЗ–0,4) и радиальных вентиляторов (Ц4 –70, Ц4–76, Ц8–18 и т.д.) для установок вентиляции и кондиционирования воздуха промышленных предприятий.

Вентиляторы изготовляют различных размеров, и каждому из вентиляторов соответствует определенный номер, показывающий величину диаметра рабочего колеса в дециметрах. Например, вентилятор Ц4–70 №6,3 имеет диаметр колеса 6,3 дм, или 630 мм. вентиляторы различных номеров, выполненные по одной и той же аэродинамической схеме, имеют геометрически подобные размеры и составляют одну серию или тип, например, Ц4–70.

Для подбора осевых вентиляторов, как правило, нужно знать требуемую производительность, равную количеству воздуха, определяемую расчетным путем, полное давление. Номер вентилятора и электродвигатель к нему выбирают по справочникам. Для подбора радиальных вентиляторов, кроме производительности и давления, необходимо выбрать их конструктивное исполнение.

Полное давление ρв, развиваемое вентилятором, расходуется на преодоление сопротивлений во всасывающем и нагнетательном воздуховодах, возникающих при перемещении воздуха:

Pв = ∆pвс + ∆pн = ∆pп, (8)

где ∆pвс и ∆pн – потери давления во всасывающем и нагнетательном воздуховодах; ∆pп – суммарные потери давления в вентиляционной сети.

Потери давления складываются из потерь на трение (за счет шероховатости поверхностей воздуховодов) и местные сопротивления (повороты, изменения сечения, фильтры, калориферы и т.д.).

Потери ∆pп (Па) определяют суммированием потерь давления на отдельных расчетных участках сети:

 

∆pп = (9)

∆pi = ∆pтр i+ ∆pмс i = ∆pтрi y li + (10)

где ∆pтрi и ∆pмс i – соответственно потери давления на трение и на преодоление местных сопротивлений на расчетном i-м участке воздуховода; ∆pтрi y –потери давления на трение на 1 м длины; li –длина расчетного участка воздуховода, м; -сумма коэффициентов местных сопротивлений на расчетном участке; -скорость воздуха в воздуховоде, м/с; ρ –плотность воздуха, кг/м3.

Величины ∆pтрi y и ζ приводятся в справочниках. Порядок расчета вентиляционной сети следующий.

1. Выбирают конфигурацию сети в зависимости от размещения помещений, установок, оборудования, которые должна обслуживать вентиляционная система.

2. Зная требуемое количество воздуха на отдельных участках воздуховодов, определяют поперечные размеры с учетом допустимых скоростей движения воздуха (3 – м/с).

3. По формуле рассчитывают сопротивление сети, причем за расчетную принимают наиболее протяженную магистраль.

4. По каталогам выбирают вентилятор и электродвигатель.

5. Если сопротивление сети оказалось слишком большим, размеры воздуховодов увеличивают и производят пересчет сети. Зная, какую производительность и полное давление должен развивать вентилятор, производят выбор вентилятора по его аэродинамической характеристике.

Такая характеристика вентилятора графически выражает связь между основными параметрами – производительностью, давлением, мощностью и КПД при определенных частотах вращения n (рад/с или об/мин).

При выборе типа и номера вентилятора необходимо руководствоваться тем, что вентилятор должен иметь наиболее высокий КПД, относительно небольшую скорость вращения (u = πDn/60), а также чтобы частота вращения колеса позволяла осуществить соединение с электродвигателем на одном валу.

Рис. 6 Эжектор

Принцип действия эжектора заключается в следующем. Воздух, нагнетаемый расположенным вне вентилируемого помещения компрессором или вентилятором высокого давления, подводится по трубе 1 к соплу 2 и, выходя из него с большой скоростью, создает за счет эжекции разрежение в камере 3, куда подсасывается воздух из помещения. В конфузоре 4 и горловине 5 происходит перемешивание эжектируемого (из помещения) и эжектруемого воздуха. Диффузор 6 служит для преобразования динамического давления в статическое. Недостатком эжектора является низкий КПД, не превышающий 0,25.

 


Дата добавления: 2015-07-12; просмотров: 128 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Аэрация| Определение необходимого количества воздуха при общеобменной вентиляции

mybiblioteka.su - 2015-2025 год. (0.014 сек.)