Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Защита от ионизирующих излучений

Определение материального ущерба и числа жертв. | Системы контроля требований безопасности и экологичности | Профессиональный отбор операторов технических систем | Экономические последствия и материальные затраты на обеспечение безопасности жизнедеятельности | Природоохранные (экологические) службы на предприятии | Действие шума, ультра- и инфразвука, вибрации на организм | Методы борьбы с шумом, инфра- и ультразвуком, вибрацией | Действие электрического тока на организм. | Действие электрического тока на организм человека | Защита человека от поражения электрическим током |


Читайте также:
  1. II. Социальная защита женщин
  2. III. Социальная защита детей и молодежи
  3. Автоматический радиокомпас ADF Becker 3502: назначение, комплект и размещение на самолете, основные эксплуатационно-технические показатели, электропитание и защита.
  4. Апология –неумеренное, тенденциозное восхваление, ревностная, предвзятая защита чего-нибудь или кого-нибудь.
  5. Бактериологическое оружие. Защита от поражающих факторов
  6. Билет 17. Дозы ионизирующих излучений
  7. Божественная защита

Основные принципы радиационной безопасности заключаются в непревышении установленного основного дозового предела, исключении всякого необоснованного облучения и снижении дозы излучения до возможно низкого уровня. С целью реализации этих принципов на практике обязательно контролируются дозы облучения, полученные персоналом при работе с источниками ионизирующих излучений, работа проводится в специально оборудованных помещениях, используется защита расстоянием и временем, применяются различные средства коллективной и индивидуальной защиты. В таблице 1 приведены основные дозовые пределы внешнего и внутреннего облучений в зависимости от радиочувствительности органов.

Таблица 1 – Основные значения дозовых пределов внешнего и внутреннего облучений

Для определения индивидуальных доз облучения персонала необходимо систематически проводить радиационный (дозиметрический) контроль, объем которого зависит от характера работы с радиоактивными веществами. Каждому оператору, имеющему контакт с источниками ионизирующих излучений, выдается индивидуальный дозиметр для контроля полученной дозы гамма-излучений. В помещениях, где проводится работа с радиоактивными веществами, необходимо обеспечить и общий контроль за интенсивностью различных видов излучений. Эти помещения должны быть изолированы от прочих помещений, оснащены системой приточно-вытяжной вентиляции с кратностью воздухообмена не менее пяти. Окраска стен, потолка и дверей в этих помещениях, а также устройство пола выполняются таким образом, чтобы исключить накопление радиоактивной пыли и избежать поглощения радиоактивных аэрозолей, паров и жидкостей отделочными материалами (окраска стен, дверей и в некоторых случаях потолков должна производиться масляными красками, полы покрываются материалами, не впитывающими жидкости, – линолеумом, полихлорвиниловым пластикатом и др.). Все строительные конструкции в помещениях, где проводится работа с радиоактивными веществами, не должны иметь трещин и несплошностей; углы закругляют для того, чтобы не допустить скопления в них радиоактивной пыли и облегчить уборку. Не менее одного раза в месяц проводят генеральную уборку помещений с обязательным мытьем горячей мыльной водой стен, окон, дверей, мебели и оборудования. Текущая влажная уборка помещений проводится ежедневно.

Для уменьшения облучения персонала все работы с этими источниками проводят с использованием длинных захватов или держателей. Защита временем заключается в том, что работу с радиоактивными источниками проводят за такой период времени, чтобы доза облучения, полученная персоналом, не превышала предельно допустимого уровня.

Коллективные средства защиты от ионизирующих излучений регламентируются
ГОСТом 12.4.120-83 «Средства коллективной защиты от ионизирующих излучений. Общие требования». В соответствии с этим нормативным документом основными средствами защиты являются стационарные и передвижные защитные экраны, контейнеры для транспортирования и хранения источников ионизирующих излучений, а также для сбора и транспортировки радиоактивных отходов, защитные сейфы и боксы и др.

Стационарные и передвижные защитные экраны предназначены для снижения уровня излучения на рабочем месте до допустимой величины. Если работу с источниками ионизирующих излучений проводят в специальном помещении – рабочей камере, то экранами служат ее стены, пол и потолок, изготовленные из защитных материалов. Такие экраны носят название стационарных. Для устройства передвижных экранов используют различные щиты, поглощающие или ослабляющие излучение.

Экраны изготавливают из различных материалов. Их толщина зависит от вида ионизирующего излучения, свойств защитного материала и необходимой кратности ослабления излучения. Для сооружения стационарных средств защиты стен, перекрытий, потолков и т. д. используют кирпич, бетон, баритобетон и баритовую штукатурку (в их состав входит сульфат бария – BaSO4). Эти материалы надежно защищают персонал от воздействия гамма- и рентгеновского излучения.

Для создания передвижных экранов используют различные материалы. Защита от альфа-излучения достигается применением экранов из обычного или органического стекла толщиной несколько миллиметров. Достаточной защитой от этого вида излучения является слой воздуха в несколько сантиметров. Для защиты от бета-излучения экраны изготавливают из алюминия или пластмассы (органическое стекло). От гамма- и рентгеновского излучения эффективно защищают свинец, сталь, вольфрамовые сплавы. Смотровые системы изготавливают из специальных прозрачных материалов, например, свинцового стекла. От нейтронного излучения защищают материалы, содержащие в составе водород (вода, парафин), а также бериллий, графит, соединения бора и т.д. Бетон также можно использовать для защиты от нейтронов.

Защитные сейфы применяются для хранения источников гамма-излучения. Они изготавливаются из свинца и стали.

Для работы с радиоактивными веществами, обладающими, альфа- и бета-активностью, используют защитные перчаточные боксы.

Защитные контейнеры и сборники для радиоактивных отходов изготавливаются из тех же материалов, что и экраны – органического стекла, стали, свинца и др.

При проведении работ с источниками ионизирующих излучений опасная зона[18] должна быть ограничена предупреждающими надписями.

Принцип действия приборов, предназначенных для контроля за персоналом, который подвергается воздействию ионизирующих излучений, основан на различных эффектах, возникающих при взаимодействии этих излучений с веществом. Основные методы обнаружения и измерения радиоактивности – ионизация газа, сцинтилляционные и фотохимические методы. Наиболее часто используется ионизационный метод, основанный на измерении степени ионизации среды, через которую прошло излучение.

Сцинтилляционные методы регистрации излучений основаны на способности некоторых материалов, поглощая энергию ионизирующего излучения, превращать ее в световое излучение. Примером такого материала может служить сульфид цинка (ZnS). Сцинтилляционный счетчик представляет собой фотоэлектронную трубку с окошком, покрытым сульфидом цинка. При попадании внутрь этой трубки излучения возникает слабая вспышка света, которая приводит к возникновению в фотоэлектронной трубке импульсов электрического тока. Эти импульсы усиливаются и подсчитываются.

Фотохимические методы, или методы авторадиографии, основаны на воздействии радиоактивного образца на слой фотоэмульсии, содержащий галогениды серебра. Уровень радиоактивности образца оценивают после проявления пленки.

Существуют и другие методы определения ионизирующих излучений, например калориметрические, которые основаны на измерении количества тепла, выделяющегося при взаимодействии излучения с поглощающим веществом.

Приборы дозиметрического контроля делятся на две группы: дозиметры, используемые для количественного измерения мощности дозы, и радиометры или индикаторы излучения, применяемые для быстрого обнаружения радиоактивных загрязнений.

Из отечественных приборов применяются, например, дозиметры марок ДРГЗ-04 и ДКС-04. Первый используется для измерения гамма- и рентгеновского излучения в диапазоне энергий 0,03–3,0 МэВ. Шкала прибора проградуирована в микрорентген/секунду (мкР/с). Второй прибор используется для измерения гамма- и бета-излучения в энергетическом диапазоне 0,5– 3,0 МэВ, а также нейтронного излучения (жесткие и тепловые нейтроны). Шкала прибора проградуирована в миллирентгенах в час (мР/ч). Промышленость выпускает также бытовые дозиметры, предназначенные для населения, например, бытовой дозиметр «Мастер-1» (предназначен для измерения дозы гамма-излучения), дозиметр-радиометр бытовой АНРИ-01 («Сосна»).

К средствам индивидуальной защиты от ионизирующих излучений относится спецодежда – халаты, комбинезоны, полукомбинезоны и шапочки, изготовленные из хлопчатобумажной ткани. При значительном загрязнении производственного помещения радиоактивными веществами на спецодежду из ткани дополнительно надевают пленочную одежду (нарукавники, брюки, фартук, халат и т.д.), изготовленную из пластика. Как уже сказано выше, для защиты рук следует использовать просвинцованные резиновые перчатки.

В тех случаях, когда приходится работать в условиях значительного радиационного загрязнения, для защиты персонала используют пневмокостюмы (скафандры) из пластмассовых материалов с поддувом по гибким шлангам воздуха или снабженные кислородным аппаратом. Для поддержания нормальных температурных условий в скафандре расход воздуха должен составлять 150–200 л/мин.

Для защиты органов зрения от излучения применяют очки со стеклами, содержащими специальные добавки (фосфат вольфрама или свинец), а при работе с источниками альфа- и бета-излучений глаза защищают щитками из органического стекла.

Если в воздухе находятся радиоактивные аэрозоли, то надежным средством защиты органов дыхания являются респираторы и противогазы.

Лекция 17. Международное сотрудничество в области безопасности жизнедеятельности

 

Россия участвует в международном сотрудничестве, проводимом по линии ООН, ЮНЕСКО и других организаций. С 1973 г. действует специализированное учреждение «Программа ООН по окружающей среде» (ЮНЭП).

Ученые и специалисты России принимают участие в осуществлении специальной международной программы «Человек и биосфера», Международном совете охраны птиц (СПО), Международной федерации молодежи по исследованию и охране окружающей среды Научного комитета по проблемам окружающей среды, Международного совета научных союзов (СКОПЕ). Примером плодотворного межгосударственного сотрудничества в области охраны природы служит деятельность Международного союза охраны природы (МСОП).

Большое значение в решении проблемы охраны природы имело подписание в 1975 г. 33 европейскими государствами, США и Канады Заключительного акта Совещания по безопасности и сотрудничеству в Европе. По инициативе СССР разработана и действует «Конвенция о запрещении военного и любого иного враждебного использования средств воздействия на природную среду», к которой присоединились многие государства мира. Конвенция ратифицирована нашей страной по Указу Верховного Совета СССР от 16.05.78 г.

По инициативе СССР принята также резолюция «Об исторической ответственности государств за сохранение природы Земли для нынешнего и будущих поколений» (1981 г. XXXV Сессия Генеральной Ассамблеи ООН), в 1982 г. при активном участии СССР принята Генеральной Ассамблеей ООН «Всемирная хартия природы», которая возлагает на все государства ответственность за сохранение планеты и ее богатств.

В области охраны окружающей среды двустороннее сотрудничество осуществляется между нашей страной и США и включает 11 научно-исследовательских программ и 30 проектов. Оно ведется по следующим направлениям: предотвращение загрязнения воздуха, охрана вод и морской среды от загрязнения; предотвращение загрязнения окружающей среды, связанного с сельскохозяйственным производством; организация заповедников, изучение биологических и генетических последствий загрязнения окружающей среды и др. Сотрудничество с США ведется путем обмена учеными и специалистами, научно-технической информацией, результатами исследований, проведения двусторонних конференций, симпозиумов и совещаний, совместной разработки проектов, программ и др. Аналогичная работа ведется Германией, Англией, Францией, Финляндией, Канадой, Швецией и некоторыми другими странами.

Международное сотрудничество по охране труда осуществляется в рамках Международной организации труда (МОТ), Всемирной организации здравоохранения (ВОЗ), Федерации специалистов по охране труда и промышленной гигиене (ИФАС), а также международной организации по безопасности и охране труда (МОРБОТ). МОТ в частности разрабатывает рекомендации по нормализации условий труда, ВОЗ–нормативов качества производственной среды. ИФАС координирует разработки по всему комплексу вопросов, связанных с безопасностью труда, МОРБОТ – по вопросам прогнозирования риска и создания средств защиты.

В последние годы успешно развивается сотрудничество и взаимодействие сил гражданской обороны (ГО) стран-членов НАТО и особенно стран-членов Европейского экономического сообщества. В НАТО для координации этой деятельности создан специальный Главный комитет. Комиссией европейских сообществ принята совместная программа стран-участниц по взаимодействию в области гражданской защиты.

В соответствии с достигнутым рядом европейских стран «Открытым частичным соглашением по предотвращению стихийных и технологических бедствий, защите от них и оказанию помощи пострадавшим» в Греции создан Европейский центр предотвращения бедствий и прогнозирования землетрясений (ЕЦПП). Международной организацией ГО (МОГО) постоянно повсеместно проводится всесторонняя и целенаправленная подготовка руководящего состава организаций, сил ГО и населения к ведению спасательных работ.

 


[1] Вакуумным называют оборудование, в котором различные технологические процессы протекают в среде разреженных газов. С физической точки зрения к разреженным относятся газы, находящиеся при столь малых давлениях, что средняя длина свободного пробега их молекул соизмерима с линейными размерами того оборудования, в котором эти газы находятся.

[2] Ударной волной называется распространение в газообразной, жидкой или твердой среде поверхности, на которой происходит скачкообразное повышение давления, сопровождающееся изменением плотности, температуры и скорости движения среды. Эта поверхность называется поверхностью взрыва или скачком уплотнения.

[3] Автоклавы – герметичные установки, предназначенные для проведения различных тепловых и химических процессов под повышенным давлением.

[4] Компрессоры – устройства для получения сжатого воздуха давлением свыше 3·105 Па.

[5] Потеря ограждающей способности – это образование в несущих конструкциях трещин, через которые в соседние помещения могут проникать продукты горения и пламя, или прогрев строительных конструкций до таких температур, при которых возможно самовоспламенение веществ в смежных помещениях.

Для повышения огнестойкости зданий и сооружений их металлические конструкции оштукатуривают или облицовывают материалами с низкой теплопроводностью, например, гипсовыми плитами. Хороший эффект дает окрашивание металлических и деревянных конструкций специальными огнезащитными красками (например, типа ВПМ). Для защиты деревянных конструкций от огня их также оштукатуривают или пропитывают антипиренами2 (например, фосфорнокислым или сернокислым аммонием и др.).

2 Антипирены – это химические вещества, придающие древесине негорючесть.

[6] Проводящие электрический ток ткани человеческого организма (жидкие составляющие тканей, кровь и т.д.) нагреваются в результате возникновения в них вихревых токов, а непроводящие, т.е. диэлектрики (хрящи, сухожилия и т.д.) – в результате возбуждаемых электромагнитным полем колебаний молекул диэлектрика с последующей их поляризацией, происходящих с выделением тепла.

[7] Диэлектриками называют вещества, практически не проводящие электрического тока, а полупроводниками – большой класс веществ, сопротивление которых изменяется в широких пределах и в очень сильной степени уменьшается с повышением температуры.

[8] У человека в состоянии клинической смерти наблюдается отсутствие дыхания и остановка сердца. Он не реагирует на болевые раздражители, а зрачки его глаз (расширенные) – на воздействие света.

[9] Нейтралью называется нейтральная точка источника питания (генератора, трансформатора).

[10] МэВ – единица энергии (мега-электрон-вольт), применяемая в атомной и ядерной физике. 1МэВ = 106 эВ (электрон-вольт). Для перевода значений энергии излучения в систему СИ пользуются следующими соотношениями: 1 эВ = 1,60206 • 10-19 Дж; 1 МэВ = 1,60206 • 10-13 Дж.

[11] 1 КэВ (кило-электрон-Вольт) - 103 эВ.

[12] Начиная от длины волны 2-10-2 нм в сторону коротких длин волн расположены гамма-лучи, возникающие при радиоактивном распаде атомов. Таким образом, электромагнитные излучения различного происхождения в этой области длин волн перекрываются, и их называют гамма-излучением или рентгеновским излучением в зависимости от источника.

[13] Ранее в качестве единицы поглощенной дозы использовался рад (рд). Он соответствовал поглощению в среднем 100 эрг.

[14] Внесистемной единицей дозы рентгеновского и гамма-излучения является рентген (р) – доза излучения, при которой суммарный заряд положительных или отрицательных ионов, образующихся в 1,293 • 10-6 кг воздуха, равен 0,33 • 10-9 кулонов. Это соответствует образованию 2,08 • 109 пар одновалентных ионов в 1 см3 воздуха при нормальных условиях (Т= 273 К, Р = 1,01325 • 105 Па) и связано с затратой энергии около 87 • 10-7 Дж/кг; 1P = 2,58 • 10-4 Кл/кг = 0,88 рад.

[15] Существует специальная единица эквивалентной дозы – биологический эквивалент рентгена (бэр). 1 бэр – это количество энергии любого вида излучения, поглощенного в биологической ткани, биологическое действие которого эквивалентно действию 1 рад рентгеновского или гамма-излучения; 1 Зв = 100 бэр.

[16] Биологическое действие ионизирующих излучений зависит от числа образовавшихся пар ионов, которое определяется поглощенной энергией излучения.

[17] Мутация – резкое наследственное изменение организмов, меняющее их основные признаки.

[18] Опасная зона – это пространство, в котором возможно воздействие на работающего опасного и (или) вредного производственных факторов (в данном случае – ионизирующих излучений).


Дата добавления: 2015-09-04; просмотров: 211 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Основные характеристики ионизирующих излучений| Семінар “ До себе любимої”.

mybiblioteka.su - 2015-2024 год. (0.012 сек.)