Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Теория трифилярного подвеса

Порядок выполнения работы. | Вывод расчетных формул. | Порядок выполнении работы. | Обработка результатов измерений. | Вывод расчетных формул. | Порядок выполнения работы. | Обработка результатов измерений. | Лабораторная работа № 5 | Измерение толщины металлического параллепипеда микрометром. | Замечание. |


Читайте также:
  1. A. Теория социального выбора: невозможность рационального согласования интересов
  2. B. Теория общего равновесия: невозможность сравнительной статистики
  3. F. Монетарная теория: неустойчивость выводов относительно малых вариаций постулатов
  4. Quot;Да уж. Это интересная теория, но я не думаю, что она применима ко мне, и всё. Как насчет того, чтобы сказать мне что-нибудь более ободряющее".
  5. Аксиоматические установления a priori в историко-научных теориях
  6. БАЗОВАЯ ТЕОРИЯ ЗНАКОМСТВ
  7. Биологическая экология. Теория и практика: учебник

Схема трифилярного подвеса приведена на Рис 6.

Подвижная платформа Р' подвешена к платформе Р на трех симметрично расположенных нитях АА', ВВ'., СC'. -Платформа Р позволяет возбудить в. системе крутильные колебания. Вращательный импульс, необходимый для начала крутильных колебаний, сообщается платформе путем специального приспособления, которое находится сверху прибора, приводящего в движение рычажок, связанный с диском. Этим достигается почти полное отсутствие других крутильных колебаний, наличие которых затрудняет измерения. Для удобства отсчета колебаний на платформе имеется метка, против которой при покоящейся платформе устанавливается указатель - проволока на штативе.

При повороте нижней платформы Р' (относительно верхней) вокруг вертикальной оси на некоторый угол j возникает момент сил, стремящийся вернуть платформу в положение равновесия. Если пренебречь трением, то на основании закона сохранения энергии для колеблющейся системы можно записать: , (1)

где - кинетическая энергия системы, - потенциальная энергия системы, I - момент инерции платформы вместе с исследуемым телом, М - масса платформы с телом, z0 -начальная координата

Рис. 6.

точки О' (при (j=0), z - координата точки О при текущем значении j. Точкой обозначено дифференцирование по времени.

Как следует из рис. 1., координаты точки С в системе координат (x,y,z) равны (r,0,0), а точка С' имеет координаты (Rcosj0,Rsinj0, Z), где j0-максимальный угол отклонения. Расстояние между точками С и С’ равно длине нити l, Записывая l через значение ее координат (l2=x2+y2+z2, где x2=(Rcosj0-r)2, y2=(Rsinj0)2, z2=z2), получим:

(R cosj0 - r)2+ (R sinj0)2+ z2=l2

z2=l2-R2-r2+2Rrcosj0=Z02-2Rr(1-cosj0),

так как Z2=l2-(R-r)2= l2-R2+2Rr-r2.

Учитывая, что для малых углов отклонения j0 cosj0 » 1-j02/2, получим

Z2=Z02-Rrj0 (2)

Приравнивая корень из выражения (2), найдем, что при малых углах j

(3)

Из (3) следует, что , (4).

т.к. Z0=l. Считая, что платформа совершает гармонические колебания, можем записать зависимость углового смещения в виде:

, (5)

где j0 - амплитуда отклонения, Т - период колебания, t - текущее время. Угловая скорость, являющаяся первой производной по времени, выражается так: (6)

В момент прохождения через положение равновесия

t=0, T/2,T,3T/2, ….(т.к. cos(2p/T) = ±1),

абсолютное значение этой величины будет

, (7)

На основании вышеизложенного (выражений (1) и (7)) имеем

(8)

Подставляя в (8) выражение (4), получим

откуда (9)

По формуле (9) может быть определен момент инерции платформы и тела, положенного на нее, т.к. все величины в правой части формулы могут быть непосредственно измерены. Формула (9) справедлива при отсутствии в

системе потерь энергии на трение, или при t>>T, где Т - период колебаний системы, а t - время, в течение которого амплитуда колебаний платформы заметно уменьшается (в 2-3 раза).

Параметры трифилярного подвеса.

r = 0,06 м; l = 0,61 м;

R = 0,12 м; m0 = (0,481+0,01) кг - масса пустой платформы.

 


Дата добавления: 2015-09-04; просмотров: 262 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Определение момента инерции и проверка теоремы Штейнера методом крутильных колебаний.| Проверка теоремы Штейнера методом крутильных колебаний.

mybiblioteka.su - 2015-2024 год. (0.006 сек.)