Читайте также: |
|
Так как IGBT коммутируется с высокой скоростью, то напряжение UCE быстро возрастает, особенно при запирании транзистора, и может дос-тичь критического значения, способного вызвать пробой либо коллектора, либо затвора транзистора (последнее возможно, если индуктивность цепей управления IGBT велика). Чтобы минимизировать превышение напряжения (перенапряжение) и предотвратить аварию IGBT требуется установка снаббе-ра (демпфирующей цепи). Типичные схемы снабберов и их особенности рас-смотрены в таблице 5.
Конденсатор для указанных схем необходимо выбирать с хорошими высокочастотными характеристиками, высокими допустимыми импульсны-ми токами и малым тангенсом угла потерь, например, К78 – 2 или Э63К.
Сопротивление резистора зависит от емкости конденсатора С и часто-ты коммутации IGBT fsw. Расчетные формулы для выбора мощности резисто-ров цепей снабберов, указанных в таблице 5, схем имеют следующий вид:
Схемы 2, 3 и 5 из таблицы 5:
(2.71)
Схема 4 из таблицы 5:
, (2.72)
где U – напряжение коллектор – эмиттер в установившемся режиме, которое равно напряжению звена постоянного тока преобразователя системы АИН ШИМ, ΔU – перенапряжение (рис. 2.18).
Рис. 2.18. Напряжение коллектор-эмиттер
на IGBT транзисторе при выключении
Таблица 5
Схема | Особенности | |
1. | 1. Малое число элементов. 2. Короткий провод снаббера. 3. Большие пульсации тока через электролитичес-кий конденсатор. | |
2. | 1. Малое число элементов. 2. Более длинный провод снаббера, чем в схеме 1. 3. Малые пульсации тока через электролитический конденсатор. | |
3. | 1. Малое число элементов. 2. Низкие потери мощности. 3. Подходит для средней и малой емкости конденсатора. | |
4. | 1. Большое число элементов. 2. Большие потери. 3. Перенапряжения могут быть эффективно ограничены. | |
5. | 1. Большое число элементов. 2. Низкие потери. 3. Подходит для большой емкости конденсатора. |
Выбор величины сопротивления производится из условия минимума колебаний тока коллектора при включении IGBT:
(2.73)
где LSn – индуктивность снаббера, которая не должна быть более 10 нГн.
Ток, протекающий через диод снаббера импульсный. Он почти равен отключаемому току коллектора и длится до одной микросекунды.
Отношение максимума тока через диод снаббера к среднему около (20 – 50):1. Диод должен быть высокочастотным и временем восстановления запирающих свойств trr не более 0,3 мкс.
Величина ΔU (рис. 2.18) зависит от многих факторов, она не должна превышать 50-60 В. Так, для схем из табл. 5 можно отметить следующее:
· бросок напряжения ΔU (рис. 2.18) при запирании модуля определяется как параметрами схемы, так и характеристиками IGBT, поэтому ΔU не может быть выражен математически;
· ΔU существенно зависит от индуктивности L2 цепей снаббера (L2 не должна быть более 10 нГн);
· ΔU незначительно зависит от резистора Rg на входе затвора и от темпе-ратуры;
· ΔU не определяется величиной емкости снаббера. Следовательно, для ограничения ΔU важно ограничить индуктивности L1 и L2 за счет огра-ничения длины проводов и их бифилярного монтажа.
Емкость конденсатора снаббера определяется величиной второго броска напряжения ΔU' (рис. 2.18), который не должен превышать 20 – 25 В. Учитывая, что индуктивность проводов между электролитическим конденса-тором и IGBT модулем равна L1, отключаемый ток равен IС – выражение для расчета емкости представится в следующем виде:
(2.74)
Хотя емкость конденсатора снаббера определяется величиной L1 и мо-жет быть рассчитана по (2.69) окончательно определить С можно, фактичес-ки установив модуль и определив перенапряжение. Типичное значение емкости снаббера составляет 1 мкФ на 100 А коммутируемого транзистором IGBT тока.
Исходя из величины тока, коммутируемого транзистором IGBT, а именно ICmax = 306,2 A выбираем емкость снаббера C = 3 мкФ, и применяем конденсатор высокочастотный типа К78-3 (три конденсатора 1 мкФ/600В, соединенных параллельно).
Сопротивление резистора:
(2.75)
Мощность резистора (схема 3 из таблицы 9):
(2.76)
где – задаемся равным 60 В.
По величине сопротивления и мощности реализуется резистор снаб-бера из четырнадцати двухваттных сопротивлений типа МЛТ 1,6 Ом ± 10%, соединенных параллельно, для получения эквивалентного сопротивления 0,115 Ом мощностью 28 Вт.
Заключение
Установка скважного центробежного насоса постоянно совершенству-ется, увеличиваются эффективность, надежность и долговечность ее узлов, снижается стоимость установок, и проверяются принципиально новые схемы установок.
Наиболее широко до недавних пор велись работы по усовершенство-ванию узлов электрооборудования установок, имеющих наименьшую надеж-ность и долговечность при нормальных условиях эксплуатации. Опыт такой эксплуатации установок показал, что до 80 % всех подземных ремонтов вызвано выходом из строя электродвигателя, его гидрозащиты и кабеля. Естественно, первоочередная задача в таких условиях – совершенствование этих узлов и станции управления, которая должна защищать их от аварийных режимов.
Например, на АО «АЛНАС» проведены работы, в результате которых было повышено сопротивление изоляции погружного электродвигателя (ПЭД) на порядок (с 200 до 2000 МОм).
Внедрено тестирование изоляции ПЭД по индексу поляризации, что существенно повышает эксплутационную надежность электродвигателей.
Опробованы и находятся в стадии внедрения новые выводные прово-да, которые обладают лучшей термостойкостью, сопротивлением изоляции, меньшими токами утечки, меньшим и стабильным размером наружного диа-метра. Для пропитки статоров опробован новый компаунд, в котором практи-чески нет летучих веществ, в результате чего удалось добиться лучшего заполнения пазов. Компаунд термостоек при температуре 180 – 200 ºС, при опытной пропитке показал сопротивление изоляции 2000 МОм при темпера-туре 126 ºС.
Разработана, изготовлена и прошла промысловые испытания опытная партия кабельных муфт, конструктивно выполненных по принципу громоот-водов. Наконечники муфты залиты в изоляционном материале, что обеспечи-вает их герметичность и исключает продольное перемещение. Герметичность соединения с головкой ПЭД обеспечивается радиальным уплотнением.
В той же фирме на протяжении ряда лет изготавливались двигатели, оснащенные погружными датчиками системы телеметрии СКАД-2. В настоя-щее время в кооперации с Ижевским радиозаводом, создали и поставили на промысловые испытания двигатели типа 6ПЭД с системой телеметрии ново-го поколения. Новая система телеметрии позволяет контролировать и регис-трировать следующие параметры:
· давление окружающей среды;
· температуру окружающей среды;
· давление во внутренней полости двигателя;
· температуру обмотки электродвигателя;
· уровень вибрации в двух плоскостях;
· токи утечки (сопротивление изоляции) системы: трансформатор – кабель – электродвигатель.
Список литературы
1. Ивановский В.Н., Дарищев В.И., Сабиров А.А., Каштанов В.С., Пекин С.С. Скважные насосные установки для добычи нефти.-М.: «Нефть и газ», 2002.
2. Бурков А.Т. Электронная техника и преобразователи. – М.: Транспорт, 1999. – 464 с.
3. Жежеленко И.В. Показатели качества электроэнергии и их контроль на промышленных предприятиях. – М.: Энергоатомиздат, 1986.
4. Горбачев Г.Н., Чаплыгин Е.Е. Промышленная электроника. – М.: Энергоатомиздат, 1988. – 320 с.
5. Руденко В.С., Сеньков В.И. Основы промышленной электроники. – Киев.: Вища школа, 1985. – 400 с.
6. Прянишников В.А. Электроника: Курс лекций. – СПб.: Корона, 1998. – 400 с.
7. Храмов А.Я. Электропитающие устройства: Методические указания для студентов заочного отделения по специальности 0615. Ч.1. – Л.: ЛИКИ, 1982. – 66 с.
8. Справочник по преобразовательной технике / Под ред. И.М. Чиженко. Киев: Техника, 1978. – 447 с.
9. Тиристорные преобразователи напряжения Т44 для асинхронного элек-тропривода / О.А. Андрющенко, Л.П. Петров и др. – М.: Энергоатомиз-дат, 1986. – 200 с.
10. Карлащук В.И. Электронная лаборатория на IBM РС. – М.: Солон-Р, 1999. – 506 с.
11. Чебовский О.Г., Моисеев Л.Г., Недошивин Р.П. Силовые полупровод-никовые приборы: Справочник. 2-е изд., перераб. и дополн. – М.: Энергоатомиздат, 1985. – 512 с.
12. Справочник по проектированию электроснабжения / Под ред. Ю.Г. Барыбина и др. – М.: Энергоатомиздат, 1990. – 576 с.
13. Закс М.И., Каганский Б.А., Печенин А.А. Трансформаторы для элек-тродуговой сварки. – Л.: Энергоатомиздат, 1988. – 135 с.
Дата добавления: 2015-08-27; просмотров: 849 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Расчет фильтра | | | Структурная схема ЭТКС УЭЦН |