Читайте также: |
|
The physical properties of various types of steel and of any given steel alloy at varying temperatures depend primarily on the amount of carbon present and on how it is distributed in the iron. Before heat treatment most steels are a mixture of three substances: ferrite, pearlite, and cementite. Ferrite is iron containing small amounts of carbon and other elements in solution and is soft and ductile. Cementite, a compound of iron containing about 7 percent carbon, is extremely brittle and hard. Pearlite is an intimate mixture of ferrite and cementite having a specific composition and characteristic structure, and physical characteristics intermediate between its two constituents. The toughness and hardness of a steel that is not heat treated depend on the proportions of these three ingredients. As the carbon content of a steel increases, the amount of ferrite present decreases and the amount of pearlite increases until, when the steel has 0.8 percent of carbon, it is entirely composed of pearlite. Steel with still more carbon is a mixture of pearlite and cementite. Raising the temperature of steel changes ferrite and pearlite to an allotropic form of iron-carbon alloy known as austenite, which has the property of dissolving all the free carbon present in the metal. If the steel is cooled slowly the austenite reverts to ferrite and pearlite, but if cooling is sudden, the austenite is “frozen” or changes to martensite, which is an extremely hard allotropic modification that resembles ferrite but contains carbon in solid solution.
Дата добавления: 2015-08-27; просмотров: 44 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Classifications of Steel | | | Heat Treatment of Steel |