Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Взаимодействие ядра и цитоплазмы. Избирательная активность генов в развитии. Регуляция на уровне транскрипции и на уровне трансляции

Онтогенез, как процесс реализации наследственной информации в определенных условиях среды | Основные концепции развития | Типы эмбриогенеза | ГАСТРУЛЯЦИЯ | Особенности эмбрионального развития человека. Периодизация эмбриогенеза человека | ПРОВИЗОРНЫЕ ОРГАНЫ | Развитие зародыша, эмбриона и плода | Схема 8.1. Дифференцировка мезодермы | Схема 8.3 | Взаимодействие частей развивающегося организма. Эмбриональная индукция. Опыт Шпемана |


Читайте также:
  1. U. Его радиоактивность. Изотопы. Распределение в породах. Формы нахождения. U в пегматитовом и гидротермальном процессах
  2. V. Фонетические процессы. Взаимодействие звуков в потоке речи.
  3. Абуталиева Бахытгул Толегеновна
  4. Активность А радиоактивного вещества – число спонтанных ядерных превращений в этом веществе в единицу времени.
  5. Активность вулканов.
  6. Активность и Ньютоновы тела: дорзолатеральный случай
  7. Активность карбаниона в реакциях с мономером определяется степенью сольватации связи С - Ме, которая зависит от природы противоиона и полярности среды (растворителя).

ЯДЕРНО-ЦИТОПЛАЗМАТИЧЕСКОЕ ВЗАИМОДЕЙСТВИЕ, процессы взаимодействия ядра и цитоплазмы, обеспечивающие морфолого-функциональное единство клетки. Под действием входящих из цитоплазмы в ядро регуляторов активности генов (обычно белков) происходит активация или же инактивация транскрипции тех или иных ядерных генов. В ядро поступают также предшественники и ферменты, необходимые для репликации ДНК, синтеза РНК, а также белки, входящие в состав хроматина, ядрышек и других структур ядра. У простейших и некоторых низших растений перед митозом в ядро поступают тубулины — белки, из которых строятся микротрубочки митотического веретена. Из ядра в цитоплазму, вероятно, через поры, выходят продукты генной активности — различной формы РНК и РНП, которые в дальнейшем обеспечивают синтез белка в цитоплазме и определяют его специфичность. Таким образом, ядро управляет всеми белковыми синтезами и через них физиологическими и морфологическими процессами в клетке, а цитоплазма регулирует (по принципу обратной связи) активность генетического аппарата ядра и снабжает его материалами и энергией. В более широком смысле слова к ядерно-цитоплазматическому взаимодействию относятся также взаимодействия геномов ядра и митохондрий, ядра и пластид (межгеномные взаимодействия). Основной метод изучения ядерно-цитоплазматического взаимодействия — получение ядерно-цитоплазматических гибридов путём пересадки ядер или слияния клеток.

Почти все РНК клетки синтезируются в ядре. В этом процессе, называемом транскрипцией, используется хранящаяся в ДНК информация. Синтез рибосомной РНК происходит в ядрышках, в то время как матричные (информационные) и транспортные РНК синтезируются в эухроматине.

Репликация — катализируемый ферментами процесс удвоения ДНК — также локализована в ядре

Нуклеотидные блоки, необходимые для репликации и транскрипции в ядре, должны поступать из цитоплазмы. Их включение в РНК приводит к образованию первичных продуктов, которые последовательно модифицируются путем расщепления, удаления частей молекулы и включения дополнительных нуклеотидов (созревание РНК). Наконец, мРНК и тРНК, образовавшиеся в ядре, транспортируются в цитоплазму для участия в биосинтезе белков (трансляции)

Белки не могут синтезироваться в ядре, и поэтому все ядерные белки должны быть импортированы из цитоплазмы. Это, например, гистоновые и негистоновые белки, связанные в хроматине с ДНК, полимеразы, гормональные рецепторы, факторы транскрипции и рибосомные белки. Рибосомные белки, находясь еще в ядрышке, начинают ассоциировать с рРНК, образуя рибосомные субчастицы.

Одной из очень специфический функций ядра является биосинтез НАД+. Предшественник этого кофермента, никотинамидмононуклеотид синтезируется в цитоплазме и затем транспортируется в ядрышко для превращения в динуклеотид, который после этого возвращается в цитоплазму.

10. Этапы развития многоклеточного организма (необходимые условия развития): пролиферация, детерминация, дифференцировка клеток, морфогенез, апоптоз

Пролиферация – разрастание ткани организма путём размножения клеток делением.

Термин в медицине впервые ввел немецкий ученый Вирхов для обозначения новообразования клеток путем их размножения делением, дабы отличать этот механизм от других механизмов изменения объёма клеток, например, отёка или апоптоза.

Интенсивность пролиферации регулируется стимуляторами и ингибиторами, которые могут вырабатываться и вдали от реагирующих клеток (например, гормонами), и внутри них.

Непрерывно пролиферация происходит в раннем эмбриогенезе и по мере дифференцировки периоды между делениями удлиняются.

Некоторые клетки, например нервные, не способны к пролиферации — делением размножаются их клетки-предшественницы.

 

Детерминацией (от лат. determinatio — ограничение, определение) называют возникновение качественных различий между частями развивающегося организма, которые предопределяют дальнейшую судьбу этих частей прежде, чем возникают морфологические различия между ними. Детерминация предшествует дифференцировке и морфогенезу.

Главным содержанием проблемы детерминации является раскрытие факторов развития, за исключением генетических. Исследователей обычно интересует, когда наступает детерминация и чем она обусловлена.

Исторически явление детерминации было обнаружено и активно обсуждалось в конце XIX в. В. Ру в 1887 г. укалывал горячей иглой один из первых двух бластомеров зародыша лягушки. Убитый бластомер оставался в контакте с живым. Из живого бластомера развивался зародыш, но не до конца и только в виде одной половины. Из результатов опыта Ру сделал вывод о зародыше как мозаике бластомеров, судьба которых предопределена. В дальнейшем стало ясно, что в описанном опыте Ру убитый бластомер, оставаясь в контакте с живым, служил препятствием для развития последнего в целый нормальный зародыш.

В 90-х гг. прошлого столетия О. Гертвиг и другие исследователи показали, что при полном разделении двух бластомеров амфибий из каждого развивается целый нормальный зародыш. Впоследствии многие ученые производили опыты по разделению бластомеров на разных этапах дробления у разных видов животных. Результаты оказались тоже разными. У многих беспозвоночных, например у гребневиков, круглых червей, спирально дробящихся кольчатых червей и моллюсков, а также у ящериц, изолированные бластомеры дают такие же зачатки, какие получаются из них при нормальном развитии. Они как бы обладают способностью к самодифференцировке.

Яйца таких животных назвали мозаичными. Очень четко это показано у гребневиков, обладающих в норме восемью рядами гребных пластинок. При развитии зародыша из 1/2 яйца получается четыре ряда гребных пластинок, из 1/4, - только два, из 1/8 — один ряд. На этом основании предположили, что у подобных форм в период овоплазматической сегрегации достигается жесткая, необратимая расстановка структур.

У многих других видов, например у гидромедуз, морского ежа и всех позвоночных, включая человека, отдельные изолированные бластомеры на стадии '/в и даже меньшей части зародыша могут развиваться в нормальную по строению особь. Яйцеклетки этих животных были названы регуляционными. Развитие из мозаичных и регуляционных яиц отличается также и в случаях удаления одного или группы бластомеров из развивающегося зародыша. У первых удаление одного из 24 бластомеров приводит к дефектному развитию, а у вторых — к совершенно нормальному строению зародыша.

Известны картины овоплазматической сегрегации зигот и карты презумптивных зачатков зародышей асцидии и амфибии. При нормальном развитии из этих яиц, относящихся соответственно к мозаичным и регуляционным, образуются зародыши с такими органами и из таких участков зиготы, которые соответствуют карте презумптивных зачатков на стадии зиготы и бластулы. Это означает, что в обоих случаях имеет место очень ранняя детерминация будущих процессов развития, а различия заключаются в том, в какой момент она становится необратимой или жесткой. В зависимости от этого их яйца относят кмозаичным и регуляционным.

Интересны некоторые данные, позволяющие оценить, насколько точно детерминирована судьба клеток при нормальном развитии у разных видов. Многочисленные наблюдения неопровержимо показывают, что высокая точность встречается очень редко. Она имеется у коловраток, круглых червей и некоторых других животных. Так, у коловраток весь организм состоит из строго определенного числа клеток, каждая из которых расположена на определенном месте и выполняет строго определенную функцию. У одного из видов кожа содержит 301 клетку, глотка —165, половой аппарат — 19, мускулатура — 122, нервная система —247, выделительная —24, а все тело животного — 959 клеток. Но этот пример представляет собой любопытное исключение.

У большинства видов организмов клеточная точность утрачивается либо в ходе дробления, либо на последующих стадиях. Даже у круглых червей, характеризующихся детерминированным мозаичным дроблением, существует неточность в расположении бластомеров, а подчас даже несколько разных, но равноправных способов их взаимного расположения. У кишечнополостных с анархичным дроблением как бы самой природой поставлен опыт по перемешиванию бластомеров. У зародышей амфибий тоже показаны «ошибочные» вклинивания отдельных клеток в нетипичные для них зоны, не вредящие дальнейшему развитию.

Приведенные примеры показывают, что детерминация связана не со свойствами отдельных клеток, но со свойствами развивающегося организма как целостной системы, обладающей взаимосвязанными и взаимозависимыми частями.

Сохранение нормального хода развития целого зародыша после его нарушения, естественного или искусственного, получило название эмбриональной регуляции, а достижение нормального конечного результата развития разными путями — эквифинальности. Явление эмбриональной регуляции более подробно будет рассмотрено в следующем разделе.

Итак, в настоящее время представление об изначальной мозаичности сильно поколеблено, особенно в отношении спирально дробящихся яиц. Разделение на мозаичные и регуляционные типы яиц и типы дробления условно и заключает в себе фактор времени, или момент, когда обратимая, или лабильная, детерминация сменяется необратимой, или жесткой, детерминацией, т.е. когда регуляционные процессы становятся невозможными. В природе нет видов, у которых не было бы обнаружено явлений эмбриональной регуляции, а также нет развития, в котором регулятивные возможности были бы беспредельны.

Ранее было отмечено, что детерминация предшествует дифференцировке и морфогенезу, которые обычно начинаются после дробления, а именно в периоде гаструляции и органогенеза. Детерминация имеет место и на этих, более продвинутых фазах эмбрионального развития, но уже в значении более узкого предопределения конкретного зачатка органа или его части. Если в фазе яйца, зиготы или бластулы важнейшим фактором детерминации выступает овоплазматическая сегрегация, то начиная с периода гаструляции и дальше главное место занимают межклеточные и межзачатковые взаимодействия. Надо помнить тем не менее, что взаимодействие клеток начинается со стадии двух бластомеров. В основе взаимодействий лежат химические, физические и биологические процессы и явления (изменение в среде концентрации ионов, обмен молекулами, выделение в среду продуктов жизнедеятельности, электрические и механические взаимодействия, излучения, действия поля, контакты клеточных мембран).

В определениях понятия детерминации, данных виднейшими эмбриологами, подчеркиваются подчас разные аспекты. Г. Шпеман писал, что детерминированной называется часть зародыша с того момента развития, когда она несет в себе специфические причины своего дальнейшего развития, когда она может развиваться путем самодифференцировки в соответствии со своим проспективным значением. По определению Б.П. Токина, под детерминацией следует понимать установление в ходе онтогенеза организма, развивающегося в данных конкретных условиях, таких взаимосвязей между клетками, при которых клеточные комплексы проходят совершенно определенный путь развития. Оба эти определения не противоречат тому, которое дано в самом начале раздела.

Главным в понятии детерминации, по сути, есть проблема соотношения целостности организма и автономности, или способность к самодифференцировке, его частей в онтогенезе.


Дата добавления: 2015-08-20; просмотров: 1061 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Взаимодействие развивающегося организма с материнским| ДИФФЕРЕНЦИРОВКА КЛЕТОК

mybiblioteka.su - 2015-2025 год. (0.01 сек.)