Читайте также:
|
|
1. Является частицей электромагнитного поля.
2. Движется со скоростью света.
3. Существует только в движении.
4. Остановить фотон нельзя: он либо движется со скоростью, равной скорости света, либо не существует; следовательно, масса покоя фотона равна нулю.
Для фотона,
E = h * м = c*p, где
h - постоянная Планка;
м (мю) - частота колебаний электромагнитного поля фотона;
c - скорость света,
p - импульс фотона.
Масса (покоя) равна нулю. Некоторые оперируют массой "не покоя", хотя я этим понятием предпочитаю не пользоваться (и не только я).
Если хотите, масса равна m = E/c^2.
Итак...
p = h*м / c,
m = h*м / c^2
26,, Внешним фотоэффектом (фотоэлектронной эмиссией) называется испускание электронов веществом под действием электромагнитных излучений. Электроны, вылетающие из вещества при внешнем фотоэффекте, называются фотоэлектронами, а электрический ток, образуемый ими при упорядоченном движении во внешнем электрическом поле, называется фототоком.
Законы внешнего фотоэффекта[править | править исходный текст]
1. Закон Столетова: при неизменном спектральном составе электромагнитных излучений, падающих на фотокатод, фототок насыщения пропорционален энергетической освещённости катода (иначе: число фотоэлектронов, выбиваемых из катода за 1 с, прямо пропорционально интенсивности излучения):
и
2. Максимальная начальная скорость фотоэлектронов не зависит от интенсивности падающего света, а определяется только его частотой.
3. Для каждого вещества существует красная граница фотоэффекта, то есть минимальная частота света (зависящая от химической природы вещества и состояния поверхности), ниже которой фотоэффект невозможен.
Уравнение Эйнштейна для внешнего фотоэффекта
25
Закон Стефана — Больцмана — закон излучения абсолютно чёрного тела. Определяет зависимость мощности излучения абсолютно чёрного тела от его температуры. Формулировка закона:
Абсолютно чёрное тело — физическая идеализация, тело, поглощающее всё падающее на него электромагнитное излучение во всех диапазонах и ничего не отражающее.
Мощность излучения абсолютно чёрного тела прямо пропорциональна площади поверхности и четвёртой степени температуры тела:
где - степень черноты (для всех веществ , для абсолютно черного тела )
Тепловое излучение. В нагретых телах часть внутренней энергии вещества может превращаться в энергию излучения. Поэтому нагретые тела являются источниками электромагнитного излучения в широком диапазоне частот. Это излучение называют тепловым излучением.
Зако́н смеще́ния Ви́на даёт зависимость длины волны, на которой поток излучения энергии чёрного тела достигает своего максимума, от температуры чёрного тела.
Общий вид закона смещения Вина
λmax = b / T ≈ 0,002898 м·К × T −1 (K),
Для частоты света (в герцах) закон смещения Вина имеет вид:
где
α ≈ 2,821439… Гц/К — постоянная величина,
k — постоянная Больцмана,
h — постоянная Планка,
T — температура (в кельвинах).
Закон Рэлея-Джинса — закон излучения Рэлея-Джинса для равновесной плотности излучения абсолютно чёрного тела и для испускательной способности абсолютно чёрного тела который получили Рэлей и Джинс, в рамках классической статистики (теорема о равнораспределении энергии по степеням свободы и представление об электромагнитном поле как о бесконечномерной динамической системе)
Зная связь испускательной способности абсолютно черного тела с равновесной плотностью энергии теплового излучения , для находим:
Зависимость испускательной способности абсолютно черного тела от длины волны для разных температур (выделены цветом) и её вид, исходя из классических рассуждений Релея и Джинса (черный цвет)
Ультрафиоле́товая катастро́фа — физический термин, описывающий парадокс классической физики, состоящий в том, что полная мощность теплового излучения любого нагретого тела должна быть бесконечной. Название парадокс получил из-за того, что спектральная плотность энергии излучения должна была неограниченно расти по мере сокращения длины волны.
Формула Планка — выражение для спектральной плотности мощности излучения (Спектральной Плотности Энергетической Светимости) абсолютно чёрного тела, которое было получено Максом Планком. Для плотности энергии излучения :
Планка для спектральной плотности энергетической светимости абсолютно черного тела.
,
24
Теплово́е излуче́ние — электромагнитное излучение, возникающее за счёт внутренней энергии тела[1]. Имеет сплошной спектр, максимум которого зависит от температуры тела. При остывании последний смещается в длинноволновую часть спектра. Тепловое излучение имеет нагретый металл, земная атмосфера, белый карлик
Энергетическая светимость тела[править | править исходный текст]
Энергетическая светимость тела - — физическая величина, являющаяся функцией температуры и численно равная энергии, испускаемой телом в единицу времени с единицы площади поверхности по всем направлениям и по всему спектру частот.
; Дж/с·м² = Вт/м²
Спектральная плотность энергетической светимости[править | править исходный текст]
Спектральная плотность энергетической светимости — функция частоты и температуры, характеризующая распределение энергии излучения по всему спектру частот (или длин волн).
Аналогичную функцию можно написать и через длину волны
Можно доказать, что спектральная плотность энергетической светимости, выраженная через частоту и длину волны, связаны соотношением:
Поглощающая способность тела[править | править исходный текст]
Поглощающая способность тела — — функция частоты и температуры, показывающая, какая часть энергии электромагнитного излучения, падающего на тело, поглощается телом в области частот вблизи
где — поток энергии, поглощающейся телом.
— поток энергии, падающий на тело в области вблизи
Отражающая способность тела[править | править исходный текст]
Отражающая способность тела — — функция частоты и температуры, показывающая какая часть энергии электромагнитного излучения, падающего на тело, отражается от него в области частот вблизи
где — поток энергии, отражающейся от тела.
— поток энергии, падающий на тело в области вблизи
Подробнее Альбедо
Абсолютно чёрное тело[править | править исходный текст]
Абсолютно черное тело — это физическая абстракция (модель), под которой понимают тело, полностью поглощающее всё падающее на него электромагнитное излучение
— для абсолютно чёрного тела
Подробнее Абсолютно черное тело
Серое тело[править | править исходный текст]
Серое тело — это такое тело, коэффициент поглощения которого не зависит от частоты, а зависит только от температуры
— для серого тела
Объемная плотность энергии излучения[править | править исходный текст]
Объемная плотность энергии излучения — — функция температуры, численно равная энергии электромагнитного излучения в единицу объёма по всему спектру частот
Спектральная плотность энергии[править | править исходный текст]
Спектральная плотность энергии — — функция частоты и температуры, связанная с объемной плотностью излучения формулой:
Следует отметить, что спектральная плотность энергетической светимости для абсолютно чёрного тела связана со спектральной плотностью энергии следующим соотношением:
— для абсолютно чёрного тела
Энергети́ческая свети́мость — физическая величина, одна из энергетических фотометрических величин[1]. Характеризует мощность оптического излучения, излучаемого малым участком поверхности единичной площади. Равна отношению потока излучения , испускаемого малым участком поверхности источника излучения, к его площади [1]:
Испускаемое излучение может возникать в самой поверхности, тогда говорят о самосветящейся поверхности. Другой вариант наблюдается при освещении поверхности извне. В таких случаях некоторая часть падающего потока в результате рассеяния и отражения обязательно возвращается обратно. Тогда выражение для энергетической светимости имеет вид:
Спектральная плотность энергетической светимости[править | править исходный текст]
Спектральная плотность энергетической светимости — отношение величины энергетической светимости приходящейся на малый спектральный интервал , заключённый между и , к ширине этого интервала:
Единицей измерения в системе СИ является Вт·м-3. Поскольку длины волн оптического излучения принято измерять в нанометрах, то на практике часто используется Вт·м-2·нм-1.
Иногда в литературе именуют спектральной испускательной способностью.
Закон излучения Кирхгофа Отношение излучательной способности любого тела к его поглощательной способности одинаково для всех тел при данной температуре для данной частоты и не зависит от их формы и химической природы.
Величины и могут сильно меняться при переходе от одного тела к другому, однако согласно закону излучения Кирхгофа отношение испускательной и поглощательной способностей не зависит от природы тела и является универсальной функцией частоты (длины волны) и температуры:
23
Согласно корпускулярной теории, свет представляет собой поток частиц (корпускул), испускаемых светящимися телами. Ньютон считал, что движение световых корпускул подчиняется законам механики. Так, отражение света понималось аналогично отражению упругого шарика от плоскости. Преломление света объяснялось изменением скорости корпускул при переходе из одной среды в другую. Для случая преломления света на границе вакуум–среда корпускулярная теория приводила к следующему виду закона преломления:
Волновая теория, в отличие от корпускулярной, рассматривала свет как волновой процесс, подобный механическим волнам. В основу волновой теории был положен принцип Гюйгенса, согласно которому каждая точка, до которой доходит волна, становится центром вторичных волн, а огибающая этих волн
Корпускуля́рно-волново́й дуали́зм (или Ква́нтово-волново́й дуали́зм) — принцип, согласно которому любой объект может проявлять какволновые, так и корпускулярные свойства.
Дальнейшим развитием принципа корпускулярно-волнового дуализма стала концепцияквантованных полей в квантовой теории поля.
Корпускулярно-волновой дуализм – свойство любой микрочастицы обнаруживать признаки частицы (корпускулы) и волны. Наиболее ярко корпускулярно-волновой дуализм проявляется у элементарных частиц. Электрон, нейтрон, фотон в одних условиях ведут себя как хорошо локализованные в пространстве материальные объекты (частицы), двигающиеся с определёнными энергиями и импульсами по классическим траекториям, а в других – как волны, что проявляется в их способности к интерференции и дифракции.
22
Электромагнитная волна - волна, порожденная колебанием параметра электромагнитного поля.
В зависимости от длины волны в вакууме, источника излучения и способа возбуждения различают: низкочастотные колебания, радиоволны, инфракрасное излучение, видимое излучение, ультрафиолетовое излучение, рентгеновское излучение, гамма-лучи.
Электромагнитная волна - процесс распространения электромагнитного поля в пространстве.
Электромагнитная волна представляет собой процесс последовательного, взаимосвязанного изменения векторов напряжённости электрического и магнитного полей, направленных перпендикулярно лучу распространения волны, при котором изменение электрического поля вызывает изменения магнитного поля, которые, в свою очередь, вызывают изменения электрического поля.
Рассмотрим основные свойства электромагнитных волн.
1. Электромагнитные волны излучаются колеблющимися зарядами.
Наличие ускорения - главное условие излучения электромагнитных волн.
2. Такие волны могут распространяться не только в газах, жидкостях и твердых средах, но и в вакууме.
3. Эле4. Скорость электромагнитных волн в вакууме с=300000 км/с.
Распространение электромагнитной волны в диэлектрике представляет собой непрерывное поглощение и переизлучение электромагнитной энергии электронами и ионами вещества, совершающими вынужденные колебания в переменном электрическом поле волны. При этом в диэлектрике происходит уменьшение скорости волны.
5. При переходе из одной среды в другую частота волны не изменяется.
6. Электромагнитные волны могут поглощаться веществом. Это обусловлено резонансным поглощением энергии заряженными частицами вещества. Если собственная частота колебаний частиц диэлектрика сильно отличается от частоты электромагнитной волны, поглощение происходит слабо, и среда становится прозрачной для электромагнитной волны.
7. Попадая на границу раздела двух сред, часть волны отражается, а часть проходит в другую среду, преломляясь. Если второй средой является металл, то прошедшая во вторую среду волна быстро затухает, а большая часть энергии (особенно у низкочастотных колебани
ктромагнитная волна является поперечной.
Вектор Пойнтинга (также вектор Умова — Пойнтинга) — вектор плотности потока энергии электромагнитного поля, одна из компоненттензора энергии-импульса электромагнитного поля. Вектор Пойнтинга S можно определить через векторное произведение двух векторов:
(в системе СГС),
(в системе СИ),
где E и H — векторы напряжённости электрического и магнитного полей соответственно.
Дипо́ль — идеализированная система, служащая для приближённого описания поля, создаваемого, вообще говоря, более сложными системами зарядов, а также для приближенного описа Электрический диполь — идеализированная электронейтральная система, состоящая из точечных и равных по абсолютной величине положительного и отрицательного электрических зарядов.ния действия внешнего поля на такие системы.
Другими словами, электрический диполь представляет собой совокупность двух равных по абсолютной величине разноимённых точечных зарядов, находящихся на некотором расстоянии друг от друга
Магнитный диполь — аналог электрического, который можно представить себе как систему двух «магнитных зарядов» (эта аналогия условна, так как магнитных зарядов, с точки зрения современной электродинамики, не существует). В качестве модели магнитного диполя можно рассматривать небольшую (по сравнению с расстояниями, на которых излучается генерируемое диполем магнитное поле) плоскую замкнутую проводящую рамку площади по которой течёт ток При этом магнитным моментом диполя (в системе СГСМ) называют величину где — единичный вектор, направленный перпендикулярно плоскости рамки в том направлении, при наблюдении в котором ток в рамке представляется текущим по часовой стрелке.
21
Процесс распространения колебаний в сплошной среде называется волновым процессом (или волной). При распространении волны частицы среды не движутся вместе с волной, а колеблются около своих положений равновесия. Вместе с волной от частицы к частице среды передаются лишь состояние колебательного движения и его энергия. Поэтому основным свойством всех волн, независимо от их природы, является перенос энергии без переноса вещества.
Среди разнообразных волн, встречающихся в природе и технике, выделяются следующие их типы: волны на поверхности жидкости, упругие и электромагнитные волны. Упругими (или механическими) волнами называются механические возмущения, распространяющиеся в упругой среде. Упругие волны бывают продольные и поперечные. В продольных волнах частицы среды колеблются в направлении распространения волны, в поперечных — в плоскостях, перпендикулярных направлению распространения волны.
Продольные волны могут возбуждаться в средах, в которых возникают упругие силы при деформации сжатия и растяжения, т. е. твердых, жидких и газообразных телах. Поперечные волны могут возбуждаться в среде, в которой возникают упругие силы при деформации сдвига, т. е. в твердых телах; в жидкостях и газах возникают только продольные волны, а в твердых телах — как продольные, так и поперечные.
Упругая волна называется гармонической, если соответствующие ей колебания частиц среды являются гармоническими. На рис. 220 представлена гармоническая поперечная волна, распространяющаяся со скоростью v вдоль оси х, т. е. приведена зависимость между смещением x частиц среды, участвующих в волновом процессе, и расстоянием х этих частиц (например, частицы В) от источника колебаний О для какого-то фиксированного момента времени t. Приведенный график функции x (x, t)похож на график гармонического колебания, однако они различны по существу. График волны дает зависимость смещения всех частиц среды от расстояния до источника колебаний в данный момент времени, а график колебаний — зависимость смещения данной частицы от времени.
Принцип суперпозиции (наложения) волн заключается в следующем: в линейных средах волны распространяются независимо друг от друга, то есть волна не изменяет свойства среды, и другая волна распространяется так, будто первой волны нет. Это позволяет вычислять итоговую волну как сумму всех волн, распространяющихся в данной среде.
При сложении двух или более синусоидальных волн результирующая волна в общем случае уже не будет синусоидальной.
Групповая скорость — это величина, характеризующая скорость распространения «группы волн» - то есть более или менее хорошо локализованной квазимонохроматической волны (волны с достаточно узким спектром). Обычно интерпретируется как скорость перемещения максимума амплитуднойогибающей квазимонохроматического волнового пакета (или цуга волн). В случае рассмотрения распространения волн в пространстве размерностью больше единицы подразумевается как правило волновой пакет близкий по форме к плоской волне[1].
Групповая скорость во многих важных случаях определяет скорость переноса энергии и информации квазисинусоидальной волной (хотя это утверждение в общем случае требует серьёзных уточнений и оговорок).
Для одномерных волн групповая скорость вычисляется из закона дисперсии:
,
где — угловая частота, — волновое число.
Стоя́чая волна́ — колебания в распределённых колебательных системах с характерным расположением чередующихся максимумов (пучностей) и минимумов (узлов) амплитуды. Практически такая волна возникает приотражениях от преград и неоднородностей в результате наложения отражённой волны на падающую. При этом крайне важное значение имеет частота, фаза и коэффициент затухания волны в месте отражения.
Примерами стоячей волны могут служить колебания струны, колебания воздуха в органной трубе[1]; в природе —волны Шумана.
В случае гармонических колебаний в одномерной среде стоячая волна описывается формулой:
,
где u — возмущения в точке х в момент времени t, — амплитуда стоячей волны, — частота, k — волновой вектор, — фаза.
Стоячие волны являются решениями волновых уравнений. Их можно представить себе как суперпозицию волн, распространяющихся в противоположных направлениях.
При существовании в среде стоячей волны, существуют точки, амплитуда колебаний в которых равна нулю. Эти точки называются узлами стоячей волны. Точки, в которых колебания имеют максимальную амплитуду, называются пучностями.
Дата добавления: 2015-08-18; просмотров: 114 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
При рассеянии | | | Quot;Я не стараюсь танцевать лучше всех остальных. Я стараюсь танцевать лучше себя самого". Михаил Барышников |