Читайте также:
|
|
Система сил инерции твёрдого тела можно заменить одной силой, равной и приложенной в центре О, и парой с моментом, равным . Главный вектор системы сил, как известно, не зависит от центра приведения и может быть вычислен заранее. Т.к. , то
(2)
Следовательно, главный вектор сил инерции тела, совершающего любое движение, равен произведению массы тела на ускорение его центра масс и направлен противоположно этому ускорению.
Прикладывается главный вектор к точке приведения, которую можно назначить в любом месте, т.е. он не зависит от выбора этой точки.
Если ускорение разложить на касательное и нормальное, то вектор разложиться на составляющие
, .
С определением главного момента сил инерции возникает немало сложностей. Рассмотрим несколько частных случаев.
1. Поступательное движение. В этом случае тело никакого вращения вокруг центра масс С не имеет. Отсюда заключаем, что , и равенство (1) даёт .
Следовательно, при поступательном движении силы инерции твёрдого тела приводят к одной равнодействующей, равной и проходящей через центр масс тела.
2. Плоскопараллельное движение. Пусть тело имеет плоскость симметрии и движется параллельно ей. Вследствие симметрии главный вектор и результирующая пара сил инерции, так же как и центр масс С тела, лежат в плоскости симметрии.
Тогда, помещая центр приведения в точке С, получим из равенства (1) . С другой стороны . Отсюда заключаем, что
Рис.54
(3)
Таким образом, в рассмотренном случае движение системы сил инерции приводится к результирующей силе, равной [формула (2)] и приложенной в центре масс С тела (рис.54), и к лежащей в плоскости симметрии тела паре, момент которой определяется формулой (3). Знак минус в формуле показывает, что направление момента противоположно направлению углового ускорения тела.
3. Вращение вокруг оси, проходящей через центр масс тела. Пусть опять тело имеет плоскость симметрии, а ось вращения СZ перпендикулярна к этой плоскости и проходит через центр масс тела. Тогда данный случай будет частным случаем предыдущего. Но при этом , а следовательно, и .
Таким образом, в рассмотренном случае система сил инерции приводится к данной паре, лежащей в плоскости, перпендикулярной к оси вращения тела, и имеющей момент
.
При решение задач по формулам (1) и (3) вычисляются модули соответствующих величин, а направление их указывают на чертеже.
Дата добавления: 2015-08-20; просмотров: 130 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Ринцип Даламбера для материальной точки и для механической системы | | | Татьяна |