Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Космологические модели

Введение | Присутствие пространства — открытость и твердые поверхности | Комментарий 3 | Упражнение 4. Простор взаимодействия и светящиеся контуры | Комментарий 4 | Комментарий 6 | Упражнение 9. Участие в качестве наблюдателя, участие как воплощенной личности | Упражнение 10. Участие и пространство | Комментарий 10 | Ум и источник видимости |


Читайте также:
  1. I. Составление математической модели задачи.
  2. Билет № 15 Аня., Ира..Проектирование, прогнозирование и моделирование в социальной работе
  3. Билет № 27Влад Концепции и модели групповой социальной работы.
  4. Билет № 6 Валя .Современные модели социальной работы.
  5. Вероятностные модели
  6. Вид. Модная стрижка с укладкой на той же модели
  7. Возможные модели мироустройства после мирового кризиса.

Любая космологическая модель Вселенной опирается на определенную теорию гравитации. Таких теорий много, но лишь некоторые из них удовлетворяют наблюдаемым явлениям. Теория тяготения Ньютона не удовлетворяет им даже в пределах Солнечной системы. Лучше всех согласуется с наблюдениями общая теория относительности Эйнштейна, на основе которой русский метеоролог А.Фридман в 1922 и бельгийский аббат и математик Ж.Леметр в 1927 математически описали расширение Вселенной. Из космологического принципа, постулирующего пространственную однородность и изотропность мира, они получили модель Большого взрыва. Их вывод подтвердился, когда Хаббл обнаружил связь между расстоянием и скоростью разбегания галактик. Второе важное предсказание этой модели, сделанное Г.Гамовым, касалось реликтового излучения, наблюдаемого сейчас как остаток эпохи Большого взрыва. Другие космологические модели не могут так же естественно объяснить это изотропное фоновое излучение.

Горячий Большой взрыв. Согласно космологической модели Фридмана – Леметра, Вселенная возникла в момент Большого взрыва – ок. 20 млрд. лет назад, и ее расширение продолжается до сих пор, постепенно замедляясь. В первое мгновение взрыва материя Вселенной имела бесконечные плотность и температуру; такое состояние называют сингулярностью.

Согласно общей теории относительности, гравитация не является реальной силой, а есть искривление пространства-времени: чем больше плотность материи, тем сильнее искривление. В момент начальной сингулярности искривление тоже было бесконечным. Можно выразить бесконечную кривизну пространства-времени другими словами, сказав, что в начальный момент материя и пространство одновременно взорвались везде во Вселенной. По мере увеличения объема пространства расширяющейся Вселенной плотность материи в ней падает. С.Хокинг и Р.Пенроуз доказали, что в прошлом непременно было сингулярное состояние, если общая теория относительности применима для описания физических процессов в очень ранней Вселенной.

Чтобы избежать катастрофической сингулярности в прошлом, требуется существенно изменить физику, например, предположив возможность самопроизвольного непрерывного рождения материи, как в теории стационарной Вселенной. Но астрономические наблюдения не дают для этого никаких оснований.

Чем более ранние события мы рассматриваем, тем меньше был их пространственный масштаб; по мере приближения к началу расширения горизонт наблюдателя сжимается (рис. 1). В самые первые мгновения масштаб так мал, что мы уже не в праве применять общую теорию относительности: для описания явлений в столь малых масштабах требуется квантовая механика (см. КВАНТОВАЯ МЕХАНИКА). Но квантовой теории гравитации пока не существует, поэтому никто не знает, как развивались события до момента 10–43 с, называемого планковским временем (в честь отца квантовой теории). В тот момент плотность материи достигала невероятного значения 1090 кг/см3, которое нельзя сравнить не только с плотностью окружающих нас тел (менее 10 г/см3), но даже с плотностью атомного ядра (ок. 1012 кг/см3) – наибольшей плотностью, доступной в лаборатории. Поэтому для современной физики началом расширения Вселенной служит планковское время.

(26.39 Кб)

Вот при таких условиях немыслимо высокой температуры и плотности состоялось рождение Вселенной. Причем это могло быть рождением в прямом смысле: некоторые космологи (скажем, Я.Б.Зельдович в СССР и Л.Паркер в США) считали, что частицы и гамма-фотоны были рождены в ту эпоху гравитационным полем. С точки зрения физики, этот процесс мог состояться, если сингулярность была анизотропной, т.е. гравитационное поле было неоднородным. В этом случае приливные гравитационные силы могли «вытащить» из вакуума реальные частицы, создав таким образом вещество Вселенной.

Изучая процессы, происходившие сразу после Большого взрыва, мы понимаем, что наши физические теории еще весьма несовершенны. Тепловая эволюция ранней Вселенной зависит от рождения массивных элементарных частиц – адронов, о которых ядерная физика знает еще мало. Многие из этих частиц нестабильны и короткоживущи. Швейцарский физик Р.Хагедорн считает, что может существовать великое множество адронов возрастающих масс, которые в изобилии могли формироваться при температуре порядка 1012 К, когда гигантская плотность излучения приводила к рождению адронных пар, состоящих из частицы и античастицы. Этот процесс должен был бы ограничить рост температуры в прошлом.

Согласно другой точке зрения, количество типов массивных элементарных частиц ограничено, поэтому температура и плотность в период адронной эры должны были достигать бесконечных значений. В принципе это можно было бы проверить: если бы составляющие адронов – кварки – были стабильными частицами, то некоторое количество кварков и антикварков должно было сохраниться от той горячей эпохи. Но поиск кварков оказался тщетным; скорее всего, они нестабильны. См. также ЧАСТИЦЫ ЭЛЕМЕНТАРНЫЕ.

После первой миллисекунды расширения Вселенной сильное (ядерное) взаимодействие перестало играть в ней определяющую роль: температура снизилась настолько, что атомные ядра перестали разрушаться. Дальнейшие физические процессы определялись слабым взаимодействием, ответственным за рождение легких частиц – лептонов (т.е. электронов, позитронов, мезонов и нейтрино) под действием теплового излучения. Когда в ходе расширения температура излучения понизилась примерно до 1010 К, лептонные пары перестали рождаться, почти все позитроны и электроны аннигилировали; остались лишь нейтрино и антинейтрино, фотоны и немного сохранившихся с предшествующей эпохи протонов и нейтронов. Так завершилась лептонная эра.

Следующая фаза расширения – фотонная эра – характеризуется абсолютным преобладанием теплового излучения. На каждый сохранившийся протон или электрон приходится по миллиарду фотонов. Вначале это были гамма-кванты, но по мере расширения Вселенной они теряли энергию и становились рентгеновскими, ультрафиолетовыми, оптическими, инфракрасными и, наконец, сейчас стали радиоквантами, которые мы принимаем как чернотельное фоновое (реликтовое) радиоизлучение.

Проблемы происхождения Вселенной. Гипотеза большого взрыва.

Проблема начала вселенной, подобна старому вопросу:
Что произошло первым цыпленок или яйцо. Другими словами, какая сила создала вселенную. И что создало эту силу. Или возможно, вселенная, или сила, которая создавало все это, существовали всегда, и не имели начала.
Вплоть до недавнего времени, ученые имели тенденцию не касаться таких вопросов потому, что они принадлежали к метафизике или религии, а не к науке.
Тем не менее, в последнее время возникло учение о том, что Законы Науки могут быть даже в начале вселенной. В этом случае, вселенная могла определяться полностью Законами Науки.
Многие ранние традиции, Еврейская, Христианская и Исламская религии, считали что вселенная создалась довольно недавно. Например, Епископ Ушер вычислил дату в четыре тысячи четыреста лет, для создания вселенной, прибавляя возраст людей в Ветхом Завете. Фактически, дата библейского создания не так далека от даты конца последнего Ледникового Периода, когда появился первый современный человек.
С другой стороны, некоторые люди, как например, Греческий философ Аристотель, Декарт, Ньютон, Галилей не признавали идею о том, что вселенная имела начало. Они чувствовали, что это могло было быть. Но они предпочли верить в то, что вселенная, существовала, и должна была существовать всегда то есть вечно и бесконечно.
Вселенная была по существу неменяющейся во времени. Время абсолютно однородно и синхронизировано. В любой точке вселенной оно одинаково. Пространство тоже однородно и изотропно. Масштаб одинаков в любой точке вселенной. Или она была создана в своей настоящей форме, или она существовал всегда, подобно сегодняшней. Это было естественное убеждение в то время, поскольку человеческая жизнь, на самом деле, очень короткий отрезок истории, которую вселенная значительно не изменила по сравнению с возрастом самой вселенной. В статической, неменяющейся вселенной, вопрос о том, что вселенная существовала всегда, или создалась в прошлом, - действительно материал для метафизики или религии: каждая теория могла бы принять во внимание такую вселенную.
На самом деле, в 1781, философ, Иммануил Кант, написал необычную и очень неясную работу, Критику Чистого Разума. Там, он решил, что были одинаково правильные доводы, оба для веры, что вселенная имела начало, и для веры же, что его не было. Как говорит его название, его выводы были основаны просто на причине. Другими словами, они не взяли в счет наблюдения о вселенной. В конце концов, в неменяющейся вселенной, было ли что наблюдать?
Таким образом перед учеными вставала проблема выбора между верой в бога и материальной верой. Они еще не знали первопричин происхождения вселенной так как у них не было в то время достаточной научной базы. Вера в Бога была более предпочтительна. Исторически христианство было старше чем наука и естественно немногие воспринимали науку серьезно, но со временем она набирала силу и все чаще люди поворачивали голову в ее сторону.
Тайна в науке - это то, что наука не может объяснить, как она не может объяснить то, что было до большого взрыва. Ведь все, что происходило до момента возникновения вселенной, точки сингулярности, не обсуждается- это догма. А непознанное в науке - это та тайна, которая в ближайшее время не может быть раскрыта.
В 19-е столетии подтверждение начала вселенной накапливались. Земля и остальная часть вселенной, фактически изменились со временем. С одной стороны, геологи поняли что образование скал, и ископаемых в них, имело возраст сотни или тысячи миллионов лет. Это было намного более длинным сроком,чем возраст Земли, согласно Христианству.
С другой стороны, немецкий физик, Больцман, вывел так называемый Второй Закон Термодинамики. Он указывает на то, что общая сумма беспорядочно движущихся частиц во вселенной (который измеряется количеством называющимся энтропия), всегда увеличивается со временем. Это, предполагает, что вселенная могла быть в сжатом состоянии только в одно время в точке начала. В противном случае, вселенная должна вырождаться в состояние полного беспорядка с одинаковой температурой.
Другая трудность с идеей статической вселенной была в том, что согласно Закону Силы Тяжести Ньютона, каждая звезда во вселенной должна притягиваться к каждой другой звезде. То как они могли бы остаться на постоянном расстоянии от друг друга? Не будут ли они все вместе падать? Ньютон был осведомлен об этой проблеме о звездах, привлекающих друг друга. В письме к Ричарду Бентли, ведущему философу того времени, он согласился, что конечное скопление звезд не может остаться неподвижным: они бы все упали вместе, в некоторой центральной точке. Тем не менее, он поспорил, что бесконечное скопление звезд, не должно падать вместе: для них не было бы центральной точки, чтобы туда упасть. Этот аргумент является примером западней, одну из которых мы можем встретить, когда одни говорят о бесконечных системах. Используя другие пути, чтобы добавить силу в каждой звезде, из бесконечного количества других звезд во вселенной, однажды мы можем получить другие ответы на вопрос: они могут оставаться на постоянном расстоянии от друг друга. Мы теперь знаем, что правильная методика должна рассматривать случай начальной точки, откуда произошел мир.
Несмотря на эти трудности с идеей статической и неменяющейся вселенной никто в семнадцатых, восемнадцатых, девятнадцатых или ранних двадцатых столетиях, не считал что вселенная могла развиваться со временем. Ньютон и Эйнштейн, оба пропустили шанс предсказывания, что вселенная могла бы или сокращаться, или расширяться. Нельзя действительно ставить это против Ньютона, из-за того, что он жил двести пятьдесят лет перед открытием расширения вселенной. Но Эйнштейн должен был знать это лучше. Когда он сформулировал Теорию Относительности, чтобы проверить теорию Ньютона с его собственной Специальной Теорией Относительности, он добавил так называемую, "космическую константу''. Это представляло собой отталкивающий гравитационный эффект, который мог бы балансировать эффект притяжения материала во вселенной. Таким образом, было возможно иметь статическую модель вселенной.
Эйнштейн позже сказал: космическая константа была величайшей ошибкой моей жизни. Это произошло после наблюдений отдаленных галактик, Эдвином Хабблом в 1920 году, и показало, что они перемещаются далеко от нас, со скоростями, которые были приблизительно пропорциональными их расстоянию от нас. Другими словами, вселенная не статическая, как прежде было принято думать: она расширяется. Расстояние между галактиками возрастает со временем.
В 1929 году Хаббл открывает эффект так называемый эффект «красного смещения». Он утверждает, что во всех наблюдаемых спектрах всех наблюдаемых галактик он видит красную подсветку в части спектра. Он брал в пример наблюдателя, стоящего около источника света, который удалялся или приближался. При удалении источника света мы наблюдаем красный свет спектра, а при приближении- фиолетовый.
<V V>
источник света
h - длина волны неподвижного источника света
h’- длина волны движущегося источника света
h’/ h = 1+V/C
если V>0 то h’>h

V=HR - Закон Хаббла
где R- расстояние до исследуемой галактики
H- постоянная Хаббла
V- скорость разбегания галактики
H=15км/с на 1млн.световых лет

Это означает, что все галактики от нас удаляются. Но наука, как ни странно, забыла об этом до 1964 года. И лишь в 1964 году ученые Пензиас и Вильсон открывают эффект «реликтового фона». Они утверждают, что во всех точках вселенной наблюдается постоянный и однородный шум- реликтовый фон равный 3 градусам К.
Это означает, что галактики удаляются с определенной скоростью. А если они удаляются, значит была и начальная точка отсчета.
Эти два неоспоримых и полностью доказанных факта подтверждают теорию Большого Взрыва. Значит начало было и все ранние научные догмы по проблеме начала вселенной полностью опровергаются. С этого момента научное понятие начала вселенной пришло в некоторое согласие с христианской точкой зрения на этот вопрос. Ведь христиане также считают, что начало было, но правда у них началом был БОГ и он же создал вселенную.
В начале сотворил Бог небо и землю. Земля же была безвидна и пуста, и тьма над бездною, и Дух Божий носился над водою. И сказал Бог: да будет свет. И стал свет. И увидел Бог свет, что он хорош, и отделил Бог свет от тьмы. И назвал Бог свет днем, а тьму ночью. И был вечер, и было утро: день один. 6 И сказал Бог: да будет твердь посреди воды, и да отделяет она воду от воды. [И стало так.] И создал Бог твердь, и отделил воду, которая под твердью, от воды, которая над твердью. И стало так. И назвал Бог твердь небом. [И увидел Бог, что это хорошо.] И был вечер, и было утро: день второй. И сказал Бог: да соберется вода, которая под небом, в одно место, и да явится суша. И стало так. [И собралась вода под небом в свои места, и явилась суша.] И назвал Бог сушу землею, а собрание вод назвал морями. И увидел Бог, что это хорошо. И сказал Бог: да произрастит земля зелень, траву, сеющую семя [по роду и по подобию ее, и] дерево плодовитое, приносящее по роду своему плод, в котором семя его на земле. И стало так. И произвела земля зелень, траву, сеющую семя по роду [и по подобию] ее, и дерево [плодовитое], приносящее плод, в котором семя его по роду его [на земле]. И увидел Бог, что это хорошо. И был вечер, и было утро: день третий. И сказал Бог: да будут светила на тверди небесной [для освещения земли и] для отделения дня от ночи, и для знамений, и времен, и дней, и годов; и да будут они светильниками на тверди небесной, чтобы светить на землю. И стало так. И создал Бог два светила великие: светило большее, для управления днем, и светило меньшее, для управления ночью, и звезды; и поставил их Бог на тверди небесной, чтобы светить на землю, и управлять днем и ночью, и отделять свет от тьмы. И увидел Бог, что это хорошо. И был вечер, и было утро: день четвёртый. И сказал Бог: да произведет вода пресмыкающихся, душу живую; и птицы да полетят над землею, по тверди небесной. [И стало так.] И сотворил Бог рыб больших и всякую душу животных пресмыкающихся, которых произвела вода, по роду их, и всякую птицу пернатую по роду ее. И увидел Бог, что это хорошо. И благословил их Бог, говоря: плодитесь и размножайтесь, и наполняйте воды в морях, и птицы да размножаются на земле. И был вечер, и было утро: день пятый. И сказал Бог: да произведет земля душу живую по роду ее, скотов, и гадов, и зверей земных по роду их. И стало так. И создал Бог зверей земных по роду их, и скот по роду его, и всех гадов земных по роду их. И увидел Бог, что это хорошо. И сказал Бог: сотворим человека по образу Нашему [и] по подобию Нашему, и да владычествуют они над рыбами морскими, и над птицами небесными, [и над зверями,] и над скотом, и над всею землею, и над всеми гадами, пресмыкающимися по земле. И сотворил Бог человека по образу Своему, по образу Божию сотворил его; мужчину и женщину сотворил их. И благословил их Бог, и сказал им Бог: плодитесь и размножайтесь, и наполняйте землю, и обладайте ею, и владычествуйте над рыбами морскими [и над зверями,] и над птицами небесными, [и над всяким скотом, и над всею землею,] и над всяким животным, пресмыкающимся по земле. И сказал Бог: вот, Я дал вам всякую траву, сеющую семя, какая есть на всей земле, и всякое дерево, у которого плод древесный, сеющий семя; -- вам сие будет в пищу; а всем зверям земным, и всем птицам небесным, и всякому [гаду,] пресмыкающемуся по земле, в котором душа живая, дал Я всю зелень травную в пищу. И стало так. И увидел Бог все, что Он создал, и вот, хорошо весьма. И был вечер, и было утро: день шестой.
Бог сотворил мир за шесть дней, но если исходить из теории Большого Взрыва возраст образования вселенной равен примерно 15-20 млрд. лет. Сейчас теоретические физики пытаются как бы свернуть вселенную, чтобы точнее узнать ее возраст. Но для нас же важен сам факт, что вселенная имела начало.
История Вселенной согласно стандартной модели
Большого взрыва
В нулевой момент времени Вселенная возникла из сингулярности. В течение первой миллионной доли секунды, когда температура значительно превышала 1012К, а плотность была немыслимо велика, должны были неимоверно быстро сменять друг друга экзотические взаимодействия, недоступные пониманию в рамках современной физики. Мы можем лишь размышлять над тем, каковы были те первые мгновения; например, возможно, что четыре фундаментальные силы природы были вначале слиты воедино. Однако есть основания полагать, что к концу первой миллионной доли секунды уже существовал первичный «бульон» богатых энергией («горячих») частиц излучения (фотонов) и частиц вещества. Эта само взаимодействующая масса находилась в состоянии так называемого теплового равновесия.
В те первые мгновения все имевшиеся частицы должны были непрерывно возникать и аннигилировать. Любая материальная частица имеет некоторую массу, и поэтому для ее образования требуется наличие определенной «пороговой, энергии»; пока плотность энергии фотонов оставалась достав точно высокой, могли возникать любые частицы. Мы знаем также, что, когда частицы рождаются из гамма-излучения (фотонов высокой энергии), они рождаются парами, состоящими из частицы и античастицы, например электрона и позитрона. В условии сверхплотного состояния материи, характерного для раннего этапа жизни Вселенной, частицы и античастицы должны были тотчас же после своего рождения снова сталкиваться, превращаясь в гамма-излучение. Это взаимное превращение частиц в излучение и обратно продолжалось до тех пор, пока плотность энергии фотонов превышала значение пороговой энергии образования частиц.
Когда возраст Вселенной достиг одной сотой доли секунды, ее температура упала примерно до 1011К, став ниже порогового значения, при котором могут рождаться протоны и нейтроны, но некоторые из этих частиц все-таки избежали взаимной аннигиляции со своими античастицами - иначе в современной нам Вселенной не было бы вещества! Через 1 с после Большого взрыва температура понизилась примерно до 1010К, и нейтрино, по существу, перестали взаимодействовать с веществом: Вселенная стала практически прозрачной для нейтрино. Электроны и позитроны еще продолжали аннигилировать и возникать снова, но примерно через 10с уровень плотности энергии излучения упал ниже и их порога, и огромное число электронов и позитронов превратилось в излучение в катастрофическом процессе взаимной аннигиляции, оставив после себя лишь незначительное количество электронов, достаточное, однако, для того, чтобы, объединившись с протонами и нейтронами, дать начало тому количеству вещества, которое мы наблюдаем сегодня во Вселенной.
Судя по всему, должна была существовать некоторая диспропорция между частицами (протонами, нейтронами, электронами и т. д.) и античастицами (антипротонами, антинейтронами, позитронами и т. д.), так как все частицы (а не только все античастицы) исчезли бы в процессе аннигиляции. В окружающей нас части Вселенной вещества несравнимо больше, чем антивещества, которое лишь изредка встречается в виде отдельных античастиц. Не исключено, конечно, что на ранней стадии эволюции Вселенной в ней были области, где доминировало вещество, и области с преобладанием антивещества - в этом случае возможно существование звезд и целых галактик, состоящих из антивещества; на больших расстояниях они были бы неотличимы от привычных нам звезд и галактик из вещества. Однако у нас нет никаких свидетельств в пользу этого предположения, поэтому более разумным кажется считать, что с самого начала возник небольшой, но заметный дисбаланс частиц и античастиц. В настоящее время разрабатывается ряд теорий, в которых такой дисбаланс находит вполне естественное объяснение.
Через 3 мин после Большого взрыва температура Вселенной понизилась до 109К и возникли подходящие условия для образования атомов гелия: на это были затрачены практически все имевшиеся в наличии нейтроны. Спустя примерно еще минуту почти все вещество Вселенной состояло из ядер водорода и гелия, находившихся примерно в той же количественной пропорции, какую мы наблюдаем сегодня. Начиная с этого момента, расширение первичного огненного шара происходило без существенных изменений до тех пор, пока через 700000 лет электроны и протоны не соединились в нейтральные атомы водорода, тогда Вселенная стала прозрачной для электромагнитного излучения - возникло то, что сейчас наблюдают как реликтовое фоновое излучение.
После того как вещество стало прозрачным для электромагнитного излучения, в действие вступило тяготение: оно начало преобладать над всеми другими взаимодействиями между массами практически нейтрального вещества, составлявшего основную часть материи Вселенной. Тяготение создало галактики, скопления, звезды и планеты - все эти объекты образовались из первичного вещества, которое, в свою очередь, выделилось из быстро остывавшего и терявшего плотность первичного огненного шара; тяготению же предстоит определить путь эволюции и исход жизни всей Вселенной в целом. Тем не менее, многие вопросы, касающиеся эпохи, последовавшей за эпохой отделения излучения от вещества, остаются пока без ответа; в частности, остается нерешенным вопрос формирования галактик и звезд. Образовались ли галактики раньше первого поколения звезд или наоборот? Почему вещество сосредоточилось в дискретных образованиях - звездах, галактиках, скоплениях и сверхскоплениях, - когда Вселенная как целое разлеталась в разные стороны?
Есть два основных взгляда на проблему формирования галактик. Первый состоит в том, что в любой момент времени в расширяющейся смеси вещества и излучения могли существовать случайно распределенные области с плотностью выше средней. В результате действия сил тяготения эти области сначала отделились в виде очень протяженных сгустков вещества, в которых затем начался процесс фрагментации, приведший к образованию облаков меньших размеров, которые позднее превратились в скопления и отдельные галактики, наблюдаемые сегодня. Далее в этих меньших - галактических размеров - сгустках опять-таки под действием притяжения в случайных неоднородностях плотности началось формирование звезд. Существует и другая точка зрения на ход развития событий: вначале из флуктуаций плотности в расширяющемся первичном шаре сформировались многочисленные (малые) галактики, которые с течением времени объединились в скопления, в сверхскопления и, возможно, даже в более крупные иерархические структуры.
Главным пунктом в этом споре является вопрос, имел ли процесс Большого взрыва вихревой, турбулентный, характер или протекал более гладко. Турбулентности в крупномасштабной структуре сегодняшней Вселенной отсутствуют. Вселенная выглядит удивительно сглаженной в крупных масштабах; несмотря на некоторые отклонения, в целом далекие галактики и скопления распределены по всему небу в высшей степени равномерно, а степень изотропности фонового излучения также довольно высока (выше, чем 1:3000). Все эти факты, видимо, говорят о том, что Большой взрыв был безвихревым, упорядоченным процессом расширения. Но откуда же в таком случае возникли флуктуации плотности, ставшие позднее галактиками? Решение этого вопроса затрудняется тем, что мы не располагаем наблюдательными данными, относящимися к критическому моменту образования звездных систем;
Согласно общепринятой точке зрения, микроволновое фоновое излучение дает нам информацию о той эпохе, когда возраст Вселенной насчитывал примерно 700 000 лет, чему соответствует красное смещение около 1000. Самый далекий от нас квазар имеет смещение 3,6, т.е. наблюдаемый свет этого квазара был испущен им, когда возраст Вселенной составлял чуть меньше 2 млрд. лет. В промежутке времени от 700 000 до 2 млрд. лет во Вселенной должно было произойти многое, в том числе сформировались галактики. Тем не менее, последние данные, скорее всего, свидетельствует в пользу второй из двух упомянутых выше гипотез, согласно которой образование галактик предшествовало формированию скоплений и сверхскоплений.
Успешное объяснение ряда явлений с помощью модели Большого взрыва привело к тому, что, как правило, не вызывает сомнения реальность происхождения микроволнового фонового излучения из расширяющегося первичного огненного шара в тот момент, когда вещество Вселенной стало прозрачным. Возможно, однако, что это слишком простое объяснение. В 1978 г., пытаясь найти обоснование для наблюдаемого соотношения фотонов и барионов (барионы - «тяжелые» элементарные частицы, к которым, в частности, относятся протоны и нейтроны) - 108:1, - М.Рис высказал предположение, что фоновое излучение может быть результатом «эпидемии» образования массивных звезд, начавшейся сразу после отделения излучения от вещества и до того, как возраст Вселенной достиг 1 млрд. лет. Продолжительность жизни этих звезд не могла превышать 10 млн. лет; многим из них было суждено пройти стадию сверхновых и выбросить в пространство тяжелые химические элементы, которые частично собрались в крупицы твердого вещества, образовав облака межзвездной пыли. Эта пыль, нагретая излучением догалактических звезд, могла, в свою очередь, испускать инфракрасное излучение, которое в силу его красного смещения, вызванного расширением Вселенной, наблюдается сейчас как микроволновое фоновое излучение.
Эта точка зрения не получила широкого признания, однако интересно отметить, что в 1979 г. Д.П.Вуди и П.Л.Ричарде из Калифорнийского университета опубликовали результаты наблюдений, как будто указывающие на некоторые отклонения характеристик микроволнового фонового излучения от кривой излучения абсолютно черного тела: кривая фонового излучения выглядит «острее», чем ей следовало бы быть. Позднее в том же году М.Роуэн-Робинсон, Дж.Негропонте и Дж.Силк (Колледж королевы Марии, Лондон) указали, что «горб» на кривой микроволнового излучения, обнаруженный Вуди и Ричардсом, может быть объяснен излучением пылевых облаков, образовавшихся вслед за «эпидемией» массового формирования звезд, что соответствует гипотезе М. Риса. Пока рано говорить, выдержит ли эта новая идея последующий анализ, но если она соответствует истине, то это означает, что подавляющее количество всей массы Вселенной содержится в невидимых остатках звезд первичного, догалактического, поколения ив настоящее время может находиться в массивных темных гало, окружающих яркие галактики, которые мы наблюдаем сегодня.

 

Антропный принцип.

Перейдем теперь к еще одной, не менее интересной теории возникновения мира. Это Антропный принцип. В чем его сущность?

Антропный (человеческий) принцип первым сформулировал в 1960 году Иглис Г.И., но он является как бы неофициальным его автором. А официальным автором был ученый по фамилии Картер.
Антропный принцип говорит о том, что в начале вселенной был план мироздания, венцом этого плана является возникновение жизни, а венцом жизни- человек. Антропный принцип очень хорошо укладывается в религиозную концепцию программирования жизни.
Антропный принцип утверждает, что вселенная такая, какая она есть потому, что есть наблюдатель или же он должен появиться на определенном этапе развития. В доказательство вышеизложенного создатели этой теории приводят очень интересные факты. Это Критичность Фундаментальных Констант и Совпадение Больших Чисел.

Рассмотрим первый факт.
Фундаментальными константами называются
скорость света- С
постоянная планка- h
заряд электрона- е
масса электрона- mе
масса протона- mр
масса нейтрона-mn
средняя плотность во вселенной-
гравитационная постоянная-
электромагнитная постоянная- к

Исходя из этих констант обнаружили их взаимосвязь:
между массой протона, электрона и нейтрона:
mр - mn > me

me= 5,5x10 г/моль

mp-mn=13,4x10 г/моль

а также критичность значений плотности во вселенной:

q=10 г/см

если q>10,то вселенная пульсирующая

если q<10,то во вселенной будет отсутствовать тяготение

Теперь рассмотрим Совпадение Больших Чисел(фундаментальных констант).

r вселенной / r e =10

τ /re =10

qe /q вселенной =10

τ- возраст образования вселенной

Возраст образования вселенной был запрограммирован в момент Большого Взрыва и определяется как 15-20 млрд. лет.

Как мы видим из всего выше изложенного сам факт связи фундаментальных констант неоспорим. Они полностью взаимосвязаны и их малейшее изменение приведет к полному хаосу. То, что такое явное совпадение и даже можно сказать закономерность существует, дает этой безусловно интересной теории шансы на жизнь. Хотя наука и не признает ее, но в связи с той неопределенностью и противоречием, которое существует в самой науке, я бы не стал списывать со счетов эту теорию, а принял бы ее как один из вариантов.

Будущее Вселенной
Оставляя в стороне спорный вопрос, касающийся образования галактик, посмотрим, что говорят современная теория и данные наблюдений относительно будущего развития Вселенной и ее вероятного конца.
Вне всякого сомнения, именно гравитационное взаимодействие определит дальнейший ход событий. Достаточно ли во. Вселенной вещества для того, чтобы силы тяготения в конечном счете остановили процесс расширения и заставили галактики вновь начать падать друг на друга, в результате чего Вселенная закончила бы свое существование в неком «Большом сжатии». Или же наоборот. Вселенная будет расширяться бесконечно?
Процесс расширения Вселенной можно рассматривать, используя уже знакомое нам понятие скорости убегания. Согласно закону всемирного тяготения Ньютона, эффективная гравитационная сила, действующая на частицу, находящуюся внутри пустой сферической оболочки, равна нулю—. притяжение, вызываемое разными частями оболочки, взаимно компенсируется. То же имеет место и в общей теории относительности. Следовательно, если выбрать для исследования типичную сферическую область Вселенной, то все остальное можно считать полой толстостенной оболочкой, расположенной вне интересующей нас области, поскольку в силу космологического принципа все направления во Вселенной равноправны, а вещество в ней распределено равномерно. Тогда можно допустить, что на галактику, расположенную у края выбранной нами области, действуют силы притяжения только со стороны вещества, находящегося внутри выбранной сферы. Если это вещество распределено равномерно, то галактика будет притягиваться к центру сферы так, как если бы там была сосредоточена вся заключенная внутри сферы масса. В своем движении относительно центра сферы эта «пробная» галактика должна вести себя, как снаряд, выпущенный «наружу» из этой точки. Если скорость галактики достаточно велика, т. е. если она превышает скорость убегания, характерную для этой сферической области, то галактика будет продолжать свое движение вечно (открытая вселенная), но если скорость галактики недостаточна, то она в конце концов уменьшится до нуля, после чего галактика начнет двигаться к центру сферы (замкнутая вселенная).
Зная скорость разбегания галактик - она определяется значением постоянной Хаббла, - можно оценить необходимую величину массы, которая должна содержаться в данном объеме пространства, чтобы расширение когда-то прекратилось; иначе говоря, требуется рассчитать среднее значение плотности вещества, которая обеспечила бы существование замкнутой вселенной. Если окажется, что средняя плотность вещества превышает некоторое значение, называемое критической плотностью, то Вселенная через какое-то время должна перестать расширяться - тогда поле битвы останется за силами тяготения и коллапс вещества Вселенной будет неизбежным.
Принимая Но=55 км/с*Мпс, находим, что значение критической плотности примерно равно 5-10-27 кг/м3, или в среднем примерно 3 атома водорода в 1 м3 - это очень немного! При такой плотности Вселенная должна быть очень большой, а вещество в ней - очень разреженным. Определение средней плотности вещества во Вселенной - одна из важнейших задач современной астрономии.
Другой способ выяснения, открыта или замкнута Вселенная, заключается в непосредственном измерении замедления расширения, т.е. в измерении величины, известной под названием параметра замедления qо. Производя наблюдения очень удаленных объектов, мы как бы путешествуем во времени в далекое прошлое, когда - если верна теория Большого взрыва - Вселенная расширялась быстрее, чем сейчас. В принципе, производя измерения в очень широком интервале расстояний до галактик и их красных смещений, можно выявить отклонения от закона Хаббла вплоть до самых удаленных звездных систем. Но на практике этот метод не дал, по крайней мере на сегодняшний день, согласующихся между собой надежных результатов. Здесь остается еще много трудностей, включая проблему правильной оценки расстояний и возможность неизвестных пока процессов эволюции: например, вполне возможно, что в прошлом галактики имели большую светимость, чем сейчас, но вопрос в том, насколько большую? Чтобы определить, является ли наша Вселенная открытой или замкнутой, необходимо исследовать объекты с красным смещением выше 0,5, а это соответствует расстояниям, значительно превышающим те, на которых можно увидеть обычные галактики (положение может изменить космический телескоп, выведенный на орбиту вокруг Земли, создание которого планируется на 80-е годы). Ясно, что в качестве объектов исследования следует взять квазары, но в их природе, эволюции и расстояниях до них слишком много неясного, так что надежность полученных результатов остается пока сомнительной. На сегодняшний день мы располагаем наблюдательными данными, свидетельствующими в пользу как открытой, так и замкнутой модели.
Предпринимались также попытки определять возраст Вселенной разными методами и сравнивать его с хаббловским временем - тем возрастом, который имела бы Вселенная, не будь замедления расширения (около 18 млрд. лет при Но=55 км/с*Мпс). Оценки возраста самых старых звезд в шаровых скоплениях, делавшиеся на основе их химического состава с использованием современных теорий звездной эволюции, дали значения в интервале 8-18 млрд. лет, тогда как метод радиоактивной датировки дает гораздо меньшую цифру - около 6 млрд. лет. В 1978г. Д.Казанас и Д.Н.Шрамм из Чикагского университета, основываясь на данных своих наблюдений, пришли к выводу, что лучше всего согласующийся с известными фактами возраст Вселенной должен составлять 13,5-15,5 млрд. лет, что соответствует открытой, вечно расширяющейся вселенной.
С другой стороны, в 1977г. Д.Линден-Белл в Кембридже получил значение Но, примерно равное 110 км/с*Мпс, основываясь при этом на своей модели, разработанной для объяснения кажущегося разбегания со сверхсветовыми скоростями радиокомпонентов некоторых квазаров. Это значение Но, если оно, конечно, верно, должно означать, что определяемый из закона Хаббла возраст Вселенной составляет всего 9 млрд. лет, а эта величина находится на грани противоречия с возрастом, наиболее старых из известных звезд.
Если принять во внимание замедление скорости разбегания галактик (т.е. расширения Вселенной), то возникает существенная проблема, как «увязать» этот возраст с простейшей моделью Большого взрыва. В результатах, опубликованных Д.Хэйнсом в 1979г. в Кембридже, хаббловский возраст Вселенной оценивается в 13 млрд. лет, а в том же году М.Ааронсом в Стьюартской обсерватории, Дж.Хучра в Гарвардском университете и Дж.Моулд в Национальной обсерватории Кит-Пик опубликовали результаты, основанные на измерении светимости галактик в инфракрасном диапазоне, которые указывают на возраст Вселенной около 10 млрд. лет (Но=100 км/с*Мпс).
Еще позднее, в 1980г., Ж.М.Люк, Ж.Л.Бирк и Ш.Ж.Альянд из Парижского университета опубликовали результаты анализа найденного в метеоритах радиоактивного элемента рения, который имеет очень большой период полураспада (половина любого количества этого элемента распадается, превращаясь в осмий, в течение 60 млрд. лет). Сравнивая количества рения и осмия в веществе метеоритов и считая при этом, что рений образовался при взрывах сверхновых на раннем этапе эволюции Вселенной, эти ученые установили, что возраст Вселенной, по-видимому, составляет от 13 до 22 млрд. лет.
Итак, хотя сегодня большинство астрономов и сходятся во мнении, что значение Но должно соответствовать возрасту Вселенной, равному примерно 18 млрд. лет, в этом вопросе по-прежнему имеются большие расхождения, и до сих пор не представляется возможным сравнить возраст Вселенной, следующий из закона Хаббла, с возрастом отдельных составных частей Вселенной, чтобы таким образом оценить степень замедления расширения Вселенной.


Какая судьба ожидает вечно расширяющуюся Вселенную?


Если наша Вселенная будет неограниченно расширяться - а об этом свидетельствуют почти все данные наблюдений, - то что ее ожидает в будущем? По мере расширения пространства материя становится все более разреженной, галактики и скопления все более удаляются друг от друга, а температура фонового излучения неуклонно приближается к абсолютному нулю. Со временем все звезды завершат свой жизненный цикл и превратятся либо в белых карликов, остывающих до состояния холодных черных карликов, либо в нейтронные звезды или черные дыры. Эра светящегося вещества закончится, и темные массы вещества, элементарных частиц и холодного излучения будут бессмысленно разлетаться в непрерывно разрежающейся пустоте.
Впрочем, черные дыры не останутся без работы. Имея на то достаточно времени, черные дыры поглотят огромное количество вещества Вселенной. Если теория Хокинга верна, то черные дыры будут испускать излучение, но черным дырам с массой Солнца потребуется очень длительное время, прежде чем это что-то заметно изменит. Фоновое излучение остынет гораздо раньше, чем черные дыры начнут излучать больше, чем они будут поглощать из этого фонового излучения. Такой момент наступит только тогда, когда возраст Вселенной станет примерно в десять миллионов раз больше предполагаемого на сегодня. Должно пройти около 1066 лет, прежде чем черные дыры солнечной массы начнут взрываться, выбрасывая потоки частиц и излучения.
Дж.Б.Берроу из Оксфордского университета и Ф.Тип-лер из Калифорнийского университета нарисовали такую картину отдаленного будущего неограниченно расширяющейся вселенной. Даже внутри старой нейтронной звезды сохраняется еще достаточно энергии, чтобы время от времени сообщать частицам, находящимся вблизи ее поверхности, скорость, превышающую скорость убегания; предполагается, что в результате этого через достаточно продолжительное время все вещество нейтронной звезды должно испариться. Распадутся и черные дыры, вызвав рождение (в равных пропорциях) частиц и античастиц. По мнению Берроу и Типлера, если запас энергии во Вселенной достаточен только для того, чтобы обеспечить ее неограниченное расширение, то эффект электрического притяжения в электронно-позитронных парах перевесит и гравитационное притяжение, и общее расширение Вселенной как целого; поэтому за конечное время все электроны проаннигилируют со всеми позитронами. В конечном итоге последней стадией существования материи окажутся не разлетающиеся холодные темные тела или черные дыры, а безбрежное море разреженного излучения, остывающего до конечной, повсюду одинаковой, температуры.
Второе начало термодинамики предсказывает, что конец Эволюции Вселенной наступит, когда выровняется температура ее вещества - так как тепло передается от более теплых тел к более холодным, различие их температур со временем сглаживается и совершение работы становится невозможным. Эта мысль о «тепловой смерти» Вселенной была высказана еще в 1854г. Германом Гельмгольцем (1821-1894). Небезынтересно отметить, что наше современное представление о неограниченно расширяющейся Вселенной вместе с концепцией квантового излучения черных дыр, которая основана на аналогии между гравитацией и термодинамикой, по существу, привело, только более кружным путем, к выводам, сделанным Гельмгольцем.
Мы не знаем с определенностью, каков должен быть исход противоборства расширения Вселенной и гравитационного притяжения ее вещества. Если победит тяготение, Вселенная когда-нибудь сколлапсирует в процессе Большого сжатия, которое может оказаться либо концом ее существования, либо прелюдией к новому циклу расширения. Бел» же силы тяготения проиграют сражение, то расширение будет продолжаться неограниченно долго, но тем не менее гравитация будет играть существенную роль в определении окончательного состояния вещества Вселенной: станет ли оно безбрежным морем однородного излучения или же будет рассеиваться множеством темных холодных масс. В неясном далеком будущем прошедшая эпоха звездной активности может показаться лишь кратчайшим мгновением в бесконечной жизни Вселенной.
Так неужели, же Вселенная обречена на вечное расширение? Пока все данные говорят именно об этом, хотя нельзя без боли думать о превращении нашего удивительного и сложного мира в бесформенную темную пустоту. По-видимому, многим была бы больше по душе пульсирующая модель, дающая надежду на возрождение пусть не живых существ, но по крайней мере таких привычных нам вещей, как вещество и излучение. Однако, что бы мы ни предпринимали, это не изменит ни плотности космического вещества, ни судьбы космоса - нам остается принимать его таким, каков он есть: Вселенную не выбирают.

 

Вселенная бесконечна и она постоянно развивается… Даже на самом совершенном современном космическом корабле человек не может проникнуть за пределы солнечной системы, не говоря уже о нашей галактике. Конечно, учёные с помощью современных приборов изучают вселенную, но то, что они наблюдают, — лишь ничтожная её часть: проявленная составляющая. А ведь можно проникнуть и в самые глубинные слои вселенной. Если ты спросишь, как это сделать? — то вот ответ: развитым человеческим сознанием. Каждый человек и не только человек, но и все живые существа, прежде всего, — души, сознания, имеющие различные внешние материальные оболочки: тела для жизни на Земле. Как для того, чтобы находиться на Луне, человеку нужен специальный скафандр, так и душе, приходящей жить на Землю, необходима телесная оболочка, чтобы приспособиться к земным условиям. И если мы не тела, а сознания, души, то где же тогда дом для души, когда она не воплощена в материальное тело? Где живёт тогда душа? Откуда она приходит, чтобы воплотиться в тело? И куда уходит после смерти тела? Кто создал вселенную и всё, что в ней есть? И Кто управляет её развитием?    
Как устроена вселенная? "Мы есть воплощённые в материальные тела сознания, души, мы пребываем в бесконечном вселенском Океане Всевидящего и Всеслышащего Божественного Сознания, Бога, Который есть Любовь, Который примет нас навсегда в Своей Обители, если мы тоже станем, как Он, Любовью. Пространство вселенной реально многомерно. Подобно тому, как солнечный свет сосуществует с чистой водой в одном и том же пространстве, свободно проходя сквозь воду и при этом мало взаимодействуя с ней, подобно тому, как радиоволны разных диапазонов свободно существуют в глубине пространства вне и внутри наших тел, — подобно этому везде в многомерной глубине внутри и вне любых твердых, жидких или газообразных объектов находятся другие миры — обители духов и Бога…
Основа знаний о человеке Основой знаний о человеке является то, что человек — не тело, человек — сознание, то есть способная к осознанию себя, обладающая памятью и умом живая энергия. Тело же — всего лишь временное жилище человека-сознания. Причём таких тел каждый человек — на протяжении своей личной эволюции — сменяет много. Наша — человеческая — задача здесь состоит в том, чтобы, развив себя — как душу, сознание — в достаточной мере, пройти путь от Творения к Творцу… Главное, что нужно вырастить, воспитать в себе, — это ЛЮБОВЬ".2
Где живёт душа? Между воплощениями каждая душа живёт в том слое многомерного пространства, которому она соответствует по своим качествам. Если душа — добрая, любящая, заботливая, то и живёт она в одном “доме”-слое с такими же душами. Если злая и грубая, то и “дом” её таков же. А как хочется, чтобы окружающий нас мир был радостным светлым, добрым, весёлым!!! И это можно сделать, если научиться его любить и заботиться о нём. Совершенно необходимо учиться любить все живые существа, включая и растения, и животных, чтобы затем полюбить и их Создателя. А начать можно с увлекательного путешествия в мир живой природы, в тот мир, который окружает нас здесь на Земле: различные растения, животные. Все они — наши друзья! Хочешь узнать их поближе и полюбить?

Излучение реликтовое - реальный, материальный носитель среды, наилучшая замена пресловутого эфира и физического вакуума. Возникло в результате Большого взрыва, всюду наполняет нашу Вселенную, имеет температуру ок. 2,7 К, плотность ок. 400-500 фотонов в кубическом сантиметре, малая изотропность (10-3).

Принятию реликтового излучения в роли пресловутого эфира способствовало обнаружение его резонансного и значит, более эффективного воздействия, которое способно повышаться за счет преобразования реликтового излучения в когерентное, поляризованное при мазерном эффекте в космосе или магнитном резонансе.

На небе мы можем наблюдать Солнце, Луну, планеты, звезды. Все звезды входят в состав нашей Галактики, которую мы иногда именуем Млечный Путь. В южных широтах можно также наблюдать маленькие туманные пятнышки. Это уже другие галактики: Андромеда, Большое Магеланово Облако и Малое Магеланово Облако. В галактики, вроде нашей, входят сотни миллиардов звезд. Вселенная, если она замкнута, состоит из десятков миллиардов галактик, если открыта - то из бесконечности. Часть из этих галактик можно наблюдать в телескоп. Часть Вселенной, доступная наблюдениям, называется Метагалактикой. Вся Вселенная заполнена излучением звезд. В галактиках и межгалактическом пространстве существует вещество в виде пыли и газа, которое переизлучает свет звезд. Этому веществу можно приписать определенную температуру. Излучение, находящееся в равновесии с материей замкнутой Вселенной, можно назвать фоновым излучением.

Согласно современной теории, наша Вселенная возникла в результате Большого Взрыва (Big Bang), положившего начало ее расширению в пространстве-времени. Если масса Вселенной больше так называемой "критической плотности", то пространство-время может быть искривлено этой массой настолько, что через некоторое (огромное по земным понятиям) время расширение сменится сжатием, приведя Вселенную к коллапсу. В случае же плоской Вселенной, расширение будет бесконечным, либо остановится через "бесконечное" время и обратного хода к сжатию не будет. Одним из самых мощных инструментов для проверки плоскостности нашего мира является космический микроволновой фон.

Когда-то управляемый термоядерный синтез был частой темой научно-популярных журналов. Затем о нем практически забыли. Но достижения последних месяцев могут снова привлечь внимание публики к нему.

Напомним, что при термоядерной реакции ядра изотопов более легких элементов сливаются, образуя ядра более тяжелых элементов. При этом выделяется значительная энергия. Именно термоядерный синтез является источником энергии нашего светила. Наличие в системе предельного цикла нельзя определить с помощью анализа неподвижных точек. Для определения предельного цикла обычно требуется численный расчёт модели. Однако можно узнать об отсутствии предельного цикла в системе с помощью теоремы Пуанкаре.

Теорема Пуанкаре. Пусть D - односвязная область фазовой плоскости, в которой задано векторное поле

  f (x) = [ f 1 (х 1, х 2), f 2 (х 1, х 2)],  

и пусть выражение

  (10.1)

имеет постоянный знак. Тогда система = f (x) не имеет замкнутых траекторий, целиком лежащих в D.

Определение. Область D называется односвязанной, если для двух любых точек из области D отрезок, их соединяющий, целиком находится в D.

Примеры односвязанных областей Примеры неодносвязанных областей

Предисловие


Дата добавления: 2015-08-20; просмотров: 47 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
КОСМОЛОГИЧЕСКИЕ ДАННЫЕ| Вступление

mybiblioteka.su - 2015-2025 год. (0.019 сек.)