Читайте также: |
|
Под СВ понимается обобщающий показатель типичного уровня варьирующего количественного признака на единицу совокупности в определенном месте и в определенное время. СВ обязательно является именованной. СВ бывают двух видов: 1) степенные – представляют собой абстрактные характеристики совокупности (средняя арифметическая, средняя гармоническая, средняя квадратическая и средняя геометрическая); 2) структурные выражаются конкретными величинами, совпадающими в какими-то определенными вариантами совокупности (мода, медиана).
Средняя арифметическая и средняя гармоническая наиболее распространенные виды средней, получивших широкое применение в плановых расчетах, при расчете общей средне из средних групповых, а также при выявлении взаимосвязи между признаками с помощью группировок. Выбор средней арифметической и средней гармоничской определяется характером имеющей в распоряжении исследователя информации.
Средняя квадратическая применяется для расчета среднего квадратического отклонения, являющегося показателем вариации признаков, а также в технике (например, при сооружении трубопроводов).
Средняя геометрическая (простая) используется при вычислении среднего коэффициента роста (темпа) в рядах динамики, если промежутки времени, к которым относятся коэффициенты роста, одинковы. Если средние коэффициенты роста относятся к периодам различной продолжительности, то общий средний коэффициент роста за весь период определяется по формуле средней геометрической взвешенной.
Структурные средние – мода и медиана – в отличие от степенных выступают как конкретные величины, совпадающие с вполне определенными вариантами совокупности. Это делает их незаменимыми при решения ряда практических задач.
Модой называется значение признака, которое наиболее часто встречается в совокупности (в статистическом ряду).
Медианой называется значение признака, которое лежит в середине ранжированного ряда и делит этот ряд на две равные по численности части.
Ранжированный ряд – ряд, расположенный в порядке возрастания или убывания значений признака.
Для определения медианы сначала определяют ее место в ряду, используя формулу
n+1
NMe = -------, где n – число членов ряда.
Если ряд состоит из четного числа членов, то за медиану условно принимают среднюю арифметическую из двух срединных значений.
Дата добавления: 2015-08-20; просмотров: 56 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Относительные величины (ОВ). Их классификация; основные виды. | | | Вариационный ряд (ВР) и его изучение. Построение ряда. Виды рядов. |