Читайте также:
|
|
Парная регрессия характеризует связь между двумя признаками: факторным и результативным. Аналитически связь между ними описывается уравнениями прямой, гиперболы, параболы и т. д.
1) Если результативный признак с увеличением факторного признака равномерно возрастает или убывает, то такая зависимость является линейной и описывается уравнением прямой:
ух=а0+а1х,
где ух – теоретические значения результативного признака, полученные по уравнению регрессии;
а0, а1 – параметры прямой;
х – значение факторного признака.
Параметры уравнения прямой (а0, а1) определяются путем решения системы нормальных уравнений на основе метода наименьших квадратов. Сущность данного метода заключается в нахождении параметров модели, при к-рых минимизируется сумма квадратов отклонений эмпирических (фактических) значений результативного признака от теоретических, полученных по уравнению регрессии:
Система нормальных уравнений для нахождения параметров линейной парной регрессии имеет вид:
Дата добавления: 2015-08-20; просмотров: 70 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Пример. | | | Понятие и формирование СНС. |