Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Физиология гипоталамуса

Виды мышечных сокращений | Влияние частоты и силы раздражения на амплитуду сокращения | Режимы сокращения. Сила и работа мышц | Механизм генерации потенциала действия | Соотношение фаз потенциала действия и возбудимости | Понятие о раздражимости, возбудимости клеток, тканей | Физиология, мышц классификация мышечных волокон | Функции скелетных и гладких мышц | Функциональные особенности гладких мышц | Функции, особенности мышечной системы человека |


Читайте также:
  1. агические ядра. Нейрофизиология головного мозга и каскадные пространства.
  2. Анатомия и физиология.
  3. бщая физиология синапсов.
  4. ериферический двигательный нейрон: анатомия, физиология, симптомы поражения на разных уровнях.
  5. лава первая. Психофизиология толпы.
  6. льманахи "Физиология Петербурга" и "Петербургский сборник". Эволюция жанра физиологического очерка.
  7. одкорковые узлы (зкстрапирамидная система), анатомия, физиология, симптомы поражения.

 

Гипоталамус является главным центром интеграции висцеральных процессов, играет важную роль в регуляции внутренней среды организма. Он представляет собой небольшой отдел головного мозга массой около 5 г, занимает нижнюю половину стенки и дно третьего желудочка, не имеет четких границ, является частью сети нейронов, протягивающейся от среднего мозга к глубоким участкам переднего мозга. В нейральной сети гипоталямуса выделяют более тридцати ядер. В поперечном направлении гипоталамус разделяют на три зоны – перивентрикулярную, медиальную и латеральную. Перивентрикулярная зона – это тоненькая полоска, прилежащая к третьему желудочку содержит одноименное ядро. В медиальной зоне имеется несколько ядерных областей, расположенных в переднезаднем направлении. Ядра гипоталамуса, кроме супраоптического (СО) и паравентрикулярного (ПВ), не имеют строго очерченных границ, и связать конкретные функции гипоталамуса с отдельными ядрами, за исключением СО и ПВ, невозможно. Поэтому ядра гипоталамуса разделяют на группы (передняя, средняя, задняя и преоптическая), обладающие функциональной спецификой.

В латеральном гипоталамусе ядерных областей нет, нейроны располагаются диффузно. Здесь проходят нервные проводники. Латеральный гипоталамус имеет двусторонние связи с верхними отделами ствола мозга, средним мозгом и с лимбической системой. Гипоталамус получает многочисленные афферентные сигналы от внутренних органов и кожи, они поступают по спинобульборетикулярным трактам. Другие афферентные связи представлены полисинаптическими путями, которые ещё окончательно не идентифицированы. У млекопитающих гипоталамус посредством прямых связей соединяется с низшими вегетативными центрами – ядрами блуждающих нервов в продолговатом мозге и симпатическими ядрами спинного мозга.

Стимуляция задних ядер гипоталамуса вызывает такие же реакции, как при раздражении симпатической нервной системы (расширение зрачков, сужение сосудов, повышение АД, увеличение частоты и силы сокращений сердца и др.), а раздражение передних ядер приводит к противоположным реакциям, характерным для парасимпатической системы. На основании этого был сделан вывод, что в гипоталамусе имеются симпатический (эрготропный) и парасимпатический (трофотропный) центры. Однако были получены данные, противоречащие представлению об узкой локализации симпатических и парасимпатических центров в гипоталамусе. Оказалось, что нейроны, активирующие симпатическую систему, имеются и в задней, и в передней областях. Равным образом нейроны, управляющие парасимпатической системой, также не сосредоточены в каком-то одном участке.

При раздражении близко расположенных точек гипоталамуса могут проявляться вегетативные, соматические и гормональные реакции. Гипоталамус характеризуется весьма сложным строением и выполняет свою роль в регуляции внутренней среды организма путём интеграции разнообразных соматических, вегетативных и эндокринных реакций.

Как уже отмечено, гемодинамические процессы в организме регулируются циркуляторным центром продолговатого мозга. Он получает сигналы от рецепторов кровеносного русла и посылает эфферентные импульсы к сердцу и сосудам по симпатическим и парасимпатическим волокнам. Эта рефлекторная регуляция гемодинамики управляется высшими центрами и в первую очередь гипоталамусом, который имеет связи с преганглионарными вегетативными нейронами. Регулирующее влияние гипоталамуса на сердечно-сосудистую систему проявляется при сложных вегетативных процессах, таких как поддержание температуры тела, защитное, пищевое, половое поведение и др.

Гипоталамус, являясь высшим центром поддержания постоянства внутренней среды организма, управляет и терморегуляцией. На границе между передним и задним гипоталамусом обнаруживают нейроны, реагирующие на изменение температуры кожи. Кроме кожи, периферические терморецепторы содержатся в дорзальной стенке брюшной полости, в мышцах, подкожной клетчатке и в других частях туловища и конечностей. Температурные сигналы от этих рецепторов поступают в терморегулирующие нейроны заднего гипоталамуса. Задняя гипоталамическая область является интегративным центром терморегуляции. Она получает и перерабатывает температурную информацию от рецепторов и преобразует эти входные сигналы в выходные эфферентные импульсы.

При уменьшении температуры окружающей среды ниже комфортной эфферентные нейроны заднего гипоталамуса через симпатическую нервную систему вызывают реакции термосбережения: ослабление кровоснабжения кожи и пиломоторный рефлекс (взъерошивание волос, гусиная кожа). Одновременно с этим увеличивается теплопродукция путем усиления обменных процессов в тканях через В-адренорецепторы симпатической нервной системы а также термогенного тонуса и дрожи скелетной мускулатуры. Разрушение заднего гипоталамуса приводит к полной потере терморегуляции и эксперементальные животные становятся пойкилотермными.

В медиальной гипоталамической области имеются нейроны, реагирующие на повышение температуры крови (тепловые нейроны). Они же получают сигналы от терморецепторов кожи. В случае перегревания организма тепловые сигналы передаются в заднюю область гипоталамуса, эффекторные нейроны которой запускают вегетативные и соматические реакции, увеличивающие теплоотдачу: расширение кровеносных сосудов кожи(интенсификация тепловыделения длинноволновым инфракрасным излучением и путем конвекции с поверхности тела), усиление потоотделения (затраты тепла на испарение влаги)и интенсивности дыхания (потери тепла с выдыхаемым воздухом). Повреждение переднего гипоталамуса (тепловых нейронов) нарушает теплоотдачу и приводит к перегреванию организма.

В латеральной области гипоталамуса расположены нейроны, регулирующие приспособление гемодинамики к мышечной работе путём увеличения сердечного выброса, усиления кровотока в скелетных мышцах, его уменьшения в коже и органах брюшной полости. В каудальной части медиального гипоталамуса локализуются цепи нейронов, контролирующие оборонительное и пищевое поведение, которые обусловливаются вегетативными, соматомоторными и гормональными реакциями.

Большинство из описанных выше гипоталамических регуляторных структур установлено на основе нейрофизиологических исследований. Нейронная же организация гипоталамуса пока изучена недостаточно. Предполагается, что в его нейронных цепях заложены многочисленные программы конкретных регуляторных реакций, которые реализуются при поступлении соответствующих сигналов от вышележащих отделов мозга и из внутренней среды.

В медиальном гипоталамусе имеются нейроны – рецепторы, высокочувствительные к изменениям констант крови (температуры, pH, содержания O2, CO2, минералов, гормонов и др.), отражающим состояние внутренней среды организма. На эти гуморальные изменения рецепторные нейроны реагируют возбуждением и посылают нервные импульсы в другие отделы гипоталамуса. Высокая чувствительность этих клеток к изменениям параметров крови обеспечивается особенностями кровеносной системы гипоталамуса. Во-первых, отдельные группы ядер имеют обильное изолированное кровоснабжение, капиллярная сеть которых по густоте в несколько раз превышает аналогичные сети других отделов мозга. Во-вторых, в гипоталамусе отсутствует гематоэнцефалический барьер, что обусловливает высокую проницаемость капилляров для различных веществ, включая высокомолекулярные соединения.

Медиальный гипоталамус выполняет важную роль в регулировании метаболических процессов. При этом особое значение имеет гипофизарная зона (мелкоклеточные ядра средней группы), нейроны которой вырабатывают гормоны, регулирующие функции аденогипофиза – рилизинг-гормоны (либерины) и гормоны-ингибиторы (статины). Секреторная активность нейронов гипофизотропной зоны гипоталамуса, выделяющих либерины и статины, регулируется содержанием в крови гормонов гипофиза и периферических эндокринных желез по принципу отрицательной обратной связи. Кроме того, эти же нейроны гипофизотропной зоны получают афферентные нервные сигналы от вегетативных ядер ствола мозга, лимбической системы, от нейронов, опосредующих биологические ритмы, а также зрительные, слуховые и обонятельные сигналы. Интегрируя всю эту обширную информацию (гормональную и нервную), они направляют ответную реакцию в аденогипофиз в виде нейрогормонов. Таким образом, медиальный гипоталамус представляет собой связующее звено между нервной системой и аденогипофизом, и управляет деятельностью периферических эндокринных желез, а гипоталамус в целом является главным нервным центром регуляции эндокринной системы.

В поддержании постоянства внутренней среды организма существенную роль играют антидиуретический гормон (АДГ) и окситоцин, синтезируемые в гипоталамических ядрах передней группы – супраоптическом и паравентрикулярном. Последние, в отличие от всех других ядер гипоталамуса, имеют хорошо различимые внешние контуры и лучше изучены. Сурпаоптическое ядро состоит только из крупных нейросекреторных клеток, а в паравентрикулярном центральная часть занята крупными нейронами, периферия – мелкими. Названные гормоны синтезируются крупными нейронами обоих ядер, но АДГ большей частью образуется в супраоптическом, а окситоцин – в паравентрикулярном. Эти гормоны в составе секреторных гранул переносятся по аксонам в нейрогипофиз и там выделяются в капиллярную сеть. Мелкие клетки паравентрикулярного ядра, как и нейроны мелкоклеточных ядер средней группы, вырабатывают либерины и статины, которые выделяются из их аксонов в первичную капиллярную сеть гипофиза.

В супраоптическом и паравентрикулярном ядрах гипоталамуса имеются две группы нейронов-осморецепторов, которые реагируют на изменение концентрации осмотически активных веществ в плазме крови. Одна из этих групп нейронов связана с нервными центрами, регулирующими чувство жажды (потребление воды), другая - с центрами, регулирующими поступление в кровь антидиуретического гормона (объема выделяемой мочи). Эти нейроны-рецепторы обладают высокой чувствительностью – они возбуждаются при отклонении осмоляльности плазмы крови даже на 2% от нормы (для сравнения волюморецепторы реагируют только на отклонение объема крови от нормы не менее чем на 10%). Эти же нейроны-осморецепторы воспринимают нервные импульсы из внутренних органов. Так, потребление питьевой воды увеличивает объем циркулирующей крови и снижает осмотическое давление в воротной вене, что приводит к физиологическому набуханию печени. Импульсы от её осморецепторов передаются в супраоптическое и паравентрикулярное ядра и вызывают торможение выделения АДГ. Когда буферная емкость гепатоцитов исчерпывается, избыток воды начинает снижать осмолярность артериальной крови. Это улавливается осморецепторными нейронами гипоталамуса, импульсы от которых усиливают торможение выделения АДГ. Кроме того, сигналы об увеличении объема циркулирующей крови передаются от волюморецепторов предсердий и вен в супраоптическое ядро и также вызывают подавление синтеза АДГ и усиление диуреза. Таким образом, гипоталамус поддерживает постоянство осмолярности внеклеточных жидкостей по механизму нейрогуморального рефлекса, в котором афферентное звено представлено нервными импульсами от внутренних органов и нейронов-осморецепторов супраоптического и паравентрикулярного ядрер, а эфферентные – выделением гормона в кровь.

Роль обратных связей во взаимодействии гипофиза со щитовидной железой, гонадами и надпочечниками.

Гипофиз представляет собой эндокринный орган, в котором объединены одновременно три железы, соответствующие его отделам или долям. Передняя доля гипофиза получила название аденогипофиза. По морфологическим критериям это железа эпителиального происхождения, содержащая несколько типов эндокринных клеток. Задняя доля гипофиза, или нейрогипофиз, образуется в эмбриогенезе как выпячивание вентрального гипоталамуса и имеет общее с ним нейроэктодер-мальное происхождение. В нейрогипофизе локализованы веретенообразные клетки – питуициды и аксоны гипоталамических нейронов. Третья, или промежуточная доля гипофиза, как и передняя – эпителиального происхождения, у человека практически отсутствует, но отчетливо выражена, например, у грызунов, мелкого и крупного рогатого скота. У человека функцию промежуточной доли гипофиза выполняет небольшая группа клеток передней части задней доли, эмбриологически и функционально связанных с аденогипофизом.

Функции аденогипофиза. Структура передней доли гипофиза представлена 8 типами клеток, из которых основная секреторная функция присуща хромафильным клеткам 5 групп. Выделяют следующие типы клеток:

1) ацидофильные красные клетки с мелкими гранулами или соматотрофы – вырабатывают соматотропин (СТГ, гормон роста);

2) ацидофильные желтые клетки с крупными гранулами или лактотрофы – вырабатывают пролактин;

3) базофильные тиреотрофы – вырабатывают тиреотропин (тиреотропный гормон – ТТГ);

4) базофильные гонадотрофы – вырабатывают гонад отропины: фоллитропин (фолликулостимулирующий гормон – ФСГ) и лютропин (лютеинизирующий гормон – ЛГ);

5) базофильные кортикотрофы – вырабатывают кортикотропин (адренокортикотропный гормон – АКТГ).

Кроме того, также как и в клетках промежуточной доли, в базофильных кортикотрофах образуются бета-эндорфин и мелано-тропин, поскольку все эти вещества происходят из общей молекулы предшественника липотропинов.

Таким образом, в аденогипофизе синтезируются и секретируются пять основных типов гормонов: кортикотропин, гонадотропины (фоллитропин и лютропин), тиреотропин, пролактин и соматотропин. Первые три из них обеспечивают гипофизарную регуляцию периферических эндокринных желез (коры надпочечников, половых желез и щитовидной железы), т.е. участвуют в реализации гипофизарного пути управления. Для двух других гормонов (соматотропина и пролактина) гипофиз выступает в роли периферической эндокринной железы, поскольку эти гормоны сами действуют на ткани-мишени. Регуляция секреции аденогипофизарных гормонов осуществляется с помощью гипоталамических нейропептидов, приносимых кровью воротной системы гипофиза. Регуляторные нейропептиды называют «либеринами», если они стимулируют синтез и секрецию аденогипофизарных гормонов, или «статинами», если они останавливают гормональную продукцию аденогипофиза. Не для всех гипофизарных гормонов установлены статины, хотя соматостатин может тормозить продукцию не только соматотропина, но и других гормонов.

Функции нейрогипофиза. Нейрогипофиз не образует, а лишь накапливает и секретирует нейрогормоны супраоптического и пара-вентрикулярного ядер гипоталамуса – вазопрессин и окситоцин. Оба гормона находятся в гранулах в связи со специальными белками – нейрофизинами. В процессе секреции содержимое гранул путем экзоцитоза поступает в кровь.

Регуляция секреции и физиологические эффекты вазопрессина. Секреция вазопрессина обеспечивается его синтезом в гипоталамических нейронах и регулируется тремя типами стимулов:

1) сдвигами осмотического давления и содержания натрия в крови, воспринимаемыми интероцепторами сосудов и сердца (осмо-, натрио-, волюмо- и механорецепторы), а также непосредственно гипоталамическими нейронами, воспринимающими сдвиг концентрации натрия в крови и микросреде клеток;

2) активацией гипоталамических ядер при эмоциональном и болевом стрессе, физической нагрузке,

3) гормонами плаценты и ангиотензином – II, как содержащимся в крови, так и образуемом в мозге.

Недостаток вазопрессина проявляется резко повышенным выделением мочи низкого удельного веса, что называют «несахарным диабетом», а избыток гормона ведет к задержке воды в организме.

Регуляция секреции и физиологические эффекты окситоцина. Синтез окситоцина в гипоталамических нейронах и его секреция нейрогипофизом в кровь стимулируется рефлекторным путем при раздражении рецепторов растяжения матки и механорецепторов сосков молочных желез. Усиливают секрецию гормона эстрогены. Основные эффекты окситоцина заключаются в стимуляции сокращения матки при родах, сокращении гладких мышц протоков молочных желез, что вызывает выделение молока, а также в регуляции водно-солевого обмена и питьевого поведения. Оскито-цин является одним из дополнительных факторов регуляции секреции гормонов аденогипофиза, наряду с либеринами.

Гормоны промежуточной доли. Меланотропин у взрослого человека, в отличие от животных с обильным волосяным покровом, практически не синтезируется. Функции этого гормона, заключающиеся в синтезе меланина, его дисперсии в отростках меланоцитов кожи, увеличении свободного пигмента в эпидермисе и в конечном счете повышении пигментации кожи и волос, выполняют в большей мере кортикотропин и липотропин.

Гипофиз. Особенности строения и кровоснабжения, портальная система гипофиза. Функция передней, промежуточной и задней долей гипофиза. АКТГ, ГнТГ, ТТГ, ПРЛ, МСГ, ГР, вазопрессин, окситоцин.

.


Дата добавления: 2015-08-02; просмотров: 149 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
СОМАТОТРОПИН ИНГИБИРУЮЩИЙ ГОРМОН| Физиология промежуточной и задней доли гипофиза. Регуляция секреции гипофиза

mybiblioteka.su - 2015-2024 год. (0.013 сек.)