Читайте также:
|
|
Содержание
Предисловие……………………………………………………………….........................5
Основные обозначения…………………………………………………………………..6
Введение…………………………………………………………………………………..8
1 Комплексные числа. Алгебраические операции над комплексными числами…..10
1.1 Определение комплексного числа. Формы записи комплексных чисел…………10
1.2 Действия над комплексными числами……………………………..........................12
1.3 Возведение комплексного числа в целую степень и извлечение корня из комплексных чисел…….....……..…..………..………………………………………….15
1.4 Множества точек на комплексной плоскости. Задание геометрических мест…..17
1.5 Задачи для самостоятельного решения…………………………………………….20
2 Функции комплексного переменного……………………………………...................22
2.1 Основные геометрические понятия. Определение функции комплексного переменного. Геометрическая интерпретация функции комплексного переменного……………………………………………………………………..........22
2.2 Основные элементарные функции комплексного переменного……………………..25
2.3 Предел и непрерывность……………………………………………….................28
2.4 Задачи для самостоятельного решения…………………………………………….30
3 Аналитические функции. Условия Коши-Римана……………………………………32
3.1 Дифференцирование функции комплексного переменного. Аналитичность функции………………………………………………………..........................................32
3.2 Гармонические функции. Сопряженно-гармонические функции. Восстановление аналитической функции………………………………………...........33
3.3 Геометрический смысл модуля и аргумента производной………….....................34
3.4 Конформные отображения…………………………………………………………..34
3.5 Основная задача и общие теоремы теории конформных отображений………….35
3.6 Задачи для самостоятельного решения…………………………………………….38
4 Интегрирование функции комплексного переменного……………...……….39
4.1 Интеграл по кривой и его вычисление………………………………………………39
4.2 Теорема Коши. Интегральные формулы Коши……………………........................41
4.3 Задачи для самостоятельного решения…………………………………………….43
5 Ряды в комплексной области………………………………………….................45
5.1 Числовые ряды……………………………………………………………………….45
5.2 Степенные, сходящиеся к ним и двусторонние ряды…………………………............46
5.3 Ряды Тейлора и Лорана……………………………………………………………...48
5.3.1 Ряд Тейлора………………………………………………………...........................48
5.3.2 Ряд Лорана…...…………………………………………………………………….50
5.4 Задачи для самостоятельного решения…………………………………………….53
6 Нули функции. Изолированные особые точки……………………………….54
6.1 Нули аналитической функции…………………………………………………............54
6.2 Изолированные особые точки…………………………………………..........................54
6.3 Задачи для самостоятельного решения…………………………………………….56
7 Вычеты. Применение вычетов к вычислению интегралов…………….....................57
7.1Вычет функции и его вычисление……………………………………….................57
7.2 Основная теорема о вычетах и ее применение к вычислению контурных интегралов…………………………………………………………..................................58
7.3 Приложение вычетов к вычислению некоторых действительных интегралов…...59
7.4 Задачи для самостоятельного решения…………………………………………….61
8 Нахождение изображений…………………………………………………………….63
8.1 Определение оригинала и изображения……………………………………………63
8.2 Свойства преобразования Лапласа. Таблица основных изображений…………...64
8.3 Примеры вычислений изображений………………………………………………..67
8.4 Задачи для самостоятельного решения…………………………………………….69
9 Восстановление оригинала по изображению………………………………………...71
9.1 Элементарный метод………………………………………………………………...71
9.2 Теоремы разложения………………………………………………………………...72
9.3 Задачи для самостоятельного решения…………………………………………….75
10 Приложение операционного исчисления…………………………………………...76
10.1 Решение задач Коши для линейных дифференциальных уравнений с постоянными коэффициентами…………………………………………………………76
10.2 Задачи для самостоятельного решения…………………………………………...77
11 Варианты для самостоятельного решения………………………………….............78
12 Решение задач «нулевого варианта»………………………………………………...90
13 Из истории развития теории функций комплексного переменного……………..102
13.1 Первое появление комплексных чисел………………………………..................102
13.2 Возникновение теории функций комплексного переменного…………………104
13.3 Уточнение концепции комплексного числа…………………………………….107
13.4 Развитие комплексного интегрирования………………………….......................109
13.5 Из истории операционного исчисления………………………………………….112
14 Биографический словарь……………………………………………………………115
Список использованных источников...………………………………………………..129
Приложение А Некоторые оригиналы и их изображения…………………………...130
Основные обозначения
Дата добавления: 2015-07-20; просмотров: 33 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
В состав бюджетной отчетности включаются следующие формы | | | Вычет функции и его вычисление |