Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Таким образом, импликация учитывает все случаи распределения значений истинности и считается ложной только тогда, когда ее антецедент истинен, а консеквент ложен.

Классический метод определения понятий | Первое требование, предъявляемое к правильности определения – соразмерность определяемого и определяющего понятий по объему. | Четвертое требование напоминает скорее рекомендацию, чем строгое, не допускающее исключений правило. Всякое определение должно быть ясным, четким и недвусмысленным. | Правила деления | Принципы классификации | Понимание и аргументация | ГЛАВА. Логика высказываний | Высказывание и предложение | Логическая структура высказываний | Способы образования сложных высказываний |


Читайте также:
  1. A) мнение только совершеннолетнего учитывается;
  2. C) мнение несовершеннолетнего учитывается;
  3. IV. Асимиляции. Случаи двойного морфологического значения одной функции
  4. Just - только что
  5. Quot; Я изрек пророчество, как повелено было мне; и когда я пророчествовал, произошел шум, и вот движение, и стали сближаться кости, кость с костью своею".
  6. Quot;Выглядите прилично" тогда, когда это приносит пользу
  7. Quot;Скажи: "Никогда не постигнет нас ничто, кроме того, что предначертал нам Аллах. Он - наш Мавля!" И на Аллаха пусть полагаются верующие!" (Покаяние, 51).

 

Например, импликация "Если 2 х 2 = 4, то Москва – небольшой город" является ложной, так как ее антецедент – истинное высказывание, а консеквент – ложное.

 

Отсюда ясно, что импликация выражает важнейшее свойство правильных рассуждений. Известно, что из истинных посылок нельзя получить ложное заключение, если рассуждать правильно. Этот фундаментальный принцип лежит в основе всей дедуктивной логики и сохраняется при определении операции импликации.

 

Распределение значений истинности высказываний для импликации представлено табл.4, где стрелка обозначает импликацию.

Резкое расхождение между употреблением условных высказываний в естественной речи и современной логике породило немало споров и дискуссий, в которых логиков обвиняли в том, что они не учитывают смысловой связи между высказываниями, и поэтому приходят к бессмыслице. Но как уже подчеркивалось выше, логики рассматривают условное высказывание только как импликации, т.е. с точки зрения значений истинности антецедента и консеквента. Импликация является операцией формализованного языка, а не конкретным условным высказыванием, которое может пониматься по-разному в различных контекстах (причинная связь, отношение между достаточными и необходимыми условиями, связь основания и следствия и т.п.). Когда не учитывается различие между формализованным и естественным языком, междуимпликативным и условным высказываниями, тогда неизбежно возникают п а р а д о к с ы импликации, наиболее известные из которых связаны с отождествлением импликации с логическим следованием. Тот факт, что в импликации истинный консеквент получается из любого антецедента – истинного и ложного, стали истолковывать как утверждение, что истина с л е д у е т и зч е г о у г о д н о. Или другими словами, что ложный антецедент имплицирует любой – истинный или ложный – консеквент, начали интерпретировать как утверждение, что из ложного высказывания следует любое высказывание. Но эти утверждения не согласуются с нашими интуитивными представлениями, и поэтому выступают как парадоксы так называемой материальной импликации. В последние десятилетия были предприняты усилия по преодолению этих парадоксов и поиску таких логических понятий, которые более адекватно отразили бы смысловую связь в условных высказываниях. Весь вопрос, однако, состоит в том, как выявить такую связь в общем виде, независимо от конкретного содержания антецедента и консеквента. Во всяком случае импликации, претендующие на отображение смысла, будут заведомо более узкими, чем понятие материальной импликации.

Операция эквивалентности объединяет два высказывания, имеющие одинаковые значения истинности. Следовательно, будут эквивалентными, с одной стороны, истинные высказывания, а с другой – высказывания ложные. В противном случае высказывания считаются не эквивалентными. Исходя из этого легко построить таблицу истинности для эквивалентности, символом которой служит стрелка с противоположными концами (табл. 5).

Эквивалентность можно выразить на естественном языке словами "если и только если", и в таком виде она часто встречается в формулировке научных определений.

Кроме табличного определения логические операции (за исключением отрицания) можно определить через другие, с обязательным использованием отрицания. Действительно, применив табличный метод (табл. 6), можно убедиться, что выражения (х→у) и (y → x) будут эквивалентными, т.е. (х→у)(у→x).

 

Каждая строка первой импликации и второй конверсной (обратной), полученной перестановкой отрицаний консеквента и антецедента первой, совпадают друг с другом. Следовательно указанные импликации будут эквивалентны.

С помощью таблиц истинности можно проверить, что и остальные логические операции можно определить через Другие две, причем второй операцией всегда будет отрицание. Например, дизъюнкцию можно выразить через конъюнкцию: Ú у)(x Ù y).

Способ установления истинности сложных высказываний, образованных из простых с помощью таблицы, был предложен американским логиком Ч.С. Пирсом и оказался весьма удобным. Как мы видели, этот способ основывается на комбинации значений истинности простых высказываний и последующего определения истинности сложных высказываний, образованных с помощью операций отрицания, конъюнкции, дизъюнкции и импликации. Например, когда имеется два высказывания, то число различных комбинаций из их значений истинности будет равно 4, при трех – 8, при четырех – 16, а следовательно, при заданном числе п оно равно 2ⁿ. Отсюда нетрудно заметить, что определение истинности сложного высказывания сводится в сущности к вычислению ее на основе значений истинности простых высказываний. Это впечатление усилится, если мы обозначим истину как 1, а ложь как 0 и будем их комбинировать, чтобы образовать отрицание, конъюнкцию, дизъюнкцию и т.д. В качестве иллюстрации вычислим значение истинности следующего выражения: (х Ú y) (x Ù z).

 

 

При некотором навыке процесс вычисления можно ускорить, обратив главное внимание на основную операцию, которая связывает две части формулы. В приведенном примере (табл. 7) достаточно заметить, что ложная импликация возникает при истинном антецеденте и ложном консеквенте. Отсюда легко определить возможные значения х и у в дизъюнкции Ú у), а также значения х и z в конъюнкции Ù z). Такой сокращенный способ вычисления истинности сложного высказывания основывается на установлении главной логической операции в рассматриваемой формуле.


Дата добавления: 2015-07-25; просмотров: 47 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Определение логических операций| Законы логики высказываний

mybiblioteka.su - 2015-2024 год. (0.006 сек.)