Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Ответ. -3.

Читайте также:
  1. В голове творятся катастрофические перемены. Оказывается, я теперь не такой уж и натурал, как всю жизнь думал, раз не могу дать отрицательный ответ. Но и “да” сказать не могу.
  2. Вот в чем вопрос, на который мы и ищем ответ.
  3. Выберите правильный ответ.
  4. Выберите правильный ответ.
  5. Выберите правильный ответ.
  6. Выберите правильный ответ.
  7. Грубо говоря, согласно нашему первому правилу, мы вместо «икса» подставляем в функцию бесконечность и получаем ответ.

в) Найти .

Решение. Для раскрытия неопределенности в этом случае, нужно умножить числитель и знаменатель на выражение, сопряженное числителю, а затем сократить дробь на общий множитель.

Ответ. .

г) Найти .

Решение. Для раскрытия неопределенности в этом случае, нужно выделить первый замечательный предел:

Ответ. k

д) Найти .

Решение. Для раскрытия неопределенности в этом случае, нужно произведение преобразовать в частное, то есть неопределенность свести к неопределенности или .

Выделяем первый замечательный предел, то есть, умножаем числитель и знаменатель на . Получаем,

.

Ответ. .

 

е) Найти .

Решение. Для раскрытия неопределенности в этом случае, нужно выделить второй замечательный предел: .

Ответ. .

ж) Найти

Решение. Для раскрытия неопределенности в этом случае, нужно выделить второй замечательный предел: .

Ответ. .

Найти

Решение. Подставим значение в функцию, стоящую под знаком предела. Получим,

Ответ. .

2. Задана функция и два значения аргумента .

Требуется:

- найти пределы функции при приближении к каждому из данных значений слева и справа;

- установить является ли данная функция непрерывной или разрывной для каждого из данных значений ;

- сделать схематический чертеж.

Решение. Найдем левый и правый пределы в точке .

Левый предел конечен и равен 0, а правый предел бесконечен. Следовательно, по определению точка разрыва второго рода.

Найдем левый и правый пределы в точке .

, т.е. точка непрерывности функции .

Сделаем схематический чертеж.

Рис. 1

3. Функция задается различными аналитическими выражениями для различных областей независимой переменной.

Требуется:


Дата добавления: 2015-07-25; просмотров: 47 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Ответ. 0.| Сделать схематический чертеж.

mybiblioteka.su - 2015-2024 год. (0.006 сек.)