Читайте также: |
|
СОНЯЧНА БАТАРЕЯ
В епоху подорожчання паливних ресурсів, при загрозі паливного «голодування» і погіршення стану навколишнього середовища, необхідність розвитку відновлювальної енергетики стає очевидною. Одним із найбільш перспективних напрямків альтернативних джерел енергії є сонячна енергетика та використання фотоелементів.
Розберемось в фізичній суті роботи напівпровідникових сонячних елементів. Напівпровідниковий, наприклад кремнієвий, сонячний елемент найпоширенішої конструкції являє собою систему із двох напівпровідникових шарів з провідністю p- та n- типів, що знаходяться в тісному контакті один з одним. Перехідна зона між областями з протилежними типами провідності розташовується всередині напівпровідникового матеріалу і називається електронно-дірковим або p-n- переходом.
В стані рівноваги рівень Фермі в усьому матеріалі повинен бути однаковим. Ця умова забезпечується подвійним зарядженим шаром в області p-n-переходу, отримавшого назву шару об’ємного заряду, і супроводжуючим його електростатичним потенціалом. Висота потенціального бар’єру рівна різниці положень дна зон провідності матеріалів p- та n-типів. Варто зауважити, що положення рівнів Фермі і, відповідно, висота бар’єру залежать від температури і концентрації домішок в напівпровідниковому матеріалі по обидві сторони p- та n- переходу, що, з однієї сторони, відкриває широкі можливості направленій зміні властивостей p-n- переходів, а з іншої – визначає достатньо сильну температурну залежність його оптичних та фотоелектричних характеристик.
Оптичне випромінювання, падаюче на поверхню напівпровідником структури з p-n- переходом, створює (в основному поблизу поверхні) пари електрон-дірка, при чому концентрація пар поступово спадає від поверхні в глиб напівпровідника в напрямку p-n- переходу. В цьому випадку, коли відстань від поверхні до p-n- переходу менша за глибину проникнення світла, пари електрон-дірка створюються за p-n- переходом. Якщо відстань від переходу до місця виникнення пар менша за дифузійну довжину, то вони внаслідок дифузій підійдуть до p-n -переходу і розділяться під дією його поля. Електрони перейдуть в електронну, а дірки – в діркову частину переходу. На зовнішніх металічних електродах, що з’єднані з p- і n- областями напівпровідника, з’явиться різниця потенціалів, яка викличе струм через навантажувальний опір.
Дифундуючи до p-n- переходу неосновні надлишкові носії струму будуть розподілятись завдяки наявності потенціального бар’єру. Накопичення надлишкових (розділених переходом) електронів в n- області і дірок в p- області фотоперетворювача призводить до компенсації об’ємного заряду, який зосереджений біля p-n- переходу.
Таким чином, одночасно з появою різниці потенціалів на зовнішніх електродах внаслідок освітлення відбувається і зміна потенціального бар’єру, існуючого в неосвітленому p-n- переході. Фото-ЕРС, що виникає при цьому, зменшує цей бар’єр, що в свою чергу приведе до виникнення зустрічних потоків електронів з електронної і дірок з діркової частин. Ці потоки практично рівноцінні струму в прямому напрямку, що виникають під дією прикладеної до p-n- переходу електричної напруги. Таким чином, з моменту початку освітлення по мірі накопичення надлишкової концентрації електронів в електронній частині переходу і дірок в дірковій частині відбувається зменшення бар’єру, що викликає збільшення стуму в зовнішньому навантажені. Коли число пар, які створюються світлом зрівняється з числом пар, що проходять через p-n- перехід, встановиться стаціонарний стан. Як правило це проходить через тисячну долі секунди після початку освітлення.
Дата добавления: 2015-07-25; просмотров: 48 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Реальность | | | Опис приладу. |