Читайте также:
|
|
Наиболее распространенным методом аппроксимации экспериментальных данных является метод наименьших квадратов. Метод позволяет использовать аппроксимирующие функции произвольного вида и относится к группе глобальных методов. Простейшим вариантом метода наименьших квадратов является аппроксимация прямой линией (полиномом первой степени). Этот вариант метода наименьших квадратов носит также название линейной регрессии.
Критерием близости в методе наименьших квадратов является требование минимальности суммы квадратов отклонений от аппроксимирующей функции до экспериментальных точек:
.
Таким образом, не требуется, чтобы аппроксимирующая функция проходила через все заданные точки, что особенно важно при аппроксимации данных, заведомо содержащих погрешности.
Важной особенностью метода является то, что аппроксимирующая функция может быть произвольной. Ее вид определяется особенностями решаемой задачи, например, физическими соображениями, если проводится аппроксимация результатов физического эксперимента. Наиболее часто встречаются аппроксимация прямой линией (линейная регрессия), аппроксимация полиномом (полиномиальная регрессия), аппроксимация линейной комбинацией произвольных функций. Кроме того, часто бывает возможно путем замены переменных свести задачу к линейной (провести линеаризацию).
Например, пусть аппроксимирующая функция ищется в виде
.
Прологарифмируем это выражение и введем обозначения
, .
Тогда в новых обозначениях задача сводится к отысканию коэффициентов линейной функции .
Дата добавления: 2015-07-19; просмотров: 47 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
ГЛОБАЛЬНАЯ ИНТЕРПОЛЯЦИЯ | | | АППРОКСИМАЦИЯ ЛИНЕЙНОЙ ФУНКЦИЕЙ |