Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Замена чипсета на материнской плате из песочницы

Инвертор типа PLCD2125207A фирмы EMAX | Описание принципиальной схемы | Лампы подсветки не включаются | Лампы включаются на короткое время (около 1 секунды) и тут же отключаются | Экран периодически мигает и яркость нестабильна | Инвертор типа DIVTL0144-D21 фирмы SAMPO | Инвертор фирмы TDK | Инвертор фирмы SAMPO | Лампы подсветки не загораются | Инвертор включается и отключается |


Читайте также:
  1. Анализ ликвидности и платежеспособности
  2. Анализ платежеспособности организации
  3. АНАТОМИЯ МАТЕРИНСКОЙ ЛЮБВИ
  4. Антикризисное управление неплатежеспособным хозяйствующим субъектом
  5. В соответствии со ст. 333 ГК РФ если подлежащая уплате неустойка явно несоразмерна последствиям нарушения обязательства, суд вправе уменьшить неустойку.
  6. Ввод платежей в банковскую выписку и кассовую книгу
  7. Великая замена.

Электроника для начинающих*

Просматривая недавно архив своих фото, я обнаружил фотографии со своей прошлой работы, которые было бы интересно посмотреть многим. Фотографии сделаны для себя мобильным телефоном Samsung Galaxy S в разное время, некоторые смазаны, но, увы — что есть и других уже не будет.

Прежде чем увлечься разработкой под Android, я пару лет ремонтировал компьютеры и ноутбуки. Ниже я рассказу об одной из сложнейшей операции по ремонту матплат и видеокарт — замене чипсета, далее «чип». А в конце статьи немного о том, почему ноутбуки ломаются. Думаю, что стоит предупредить — «не пытайтесь повторить это дома».

Для работы необходимо:

Флюс (BGA Gel Flux). Условно назовем — «жидкий» (Рис.1)

И «вязкий» (Рис.2).

Первый имеет под крышечкой кисточку и легко наносится при манипуляциях при комнатной температуре, а второй — аморфная масса, становящаяся жидкой при температурах, близких к температуре плавления припоя.

Оплётка (Рис.3) используется для очистки площадок от старого припоя.

Банка с припоем в шариках необходимого диаметра (Рис.4). Далее в тексте как «шары».

Трафарет под данный чип и станок «для накатки шаров». На фото (Рис.5) трафарет и чип установлены на станок. На переднем плане две микросхемы ОЗУ DDR2. Для них тоже существуют трафареты.

На трафарете указан диаметр отверстий и, соответственно, именно такие нужны шарики припоя. Это самый простой станок и не самый удобный. В нем накатка шаров производится нагревом «воздушкой», поэтому и трафарет должен быть предназначен для нагрева. Существует более удобный станок, который только позиционирует шарики на место, а нагрев их с чипом происходит без трафарета. Трафареты для такого станка не предназначены для нагрева — деформируются.

Собственно две паяльные станции (Рис.6) — инфракрасная и обычная с паяльником и «воздушкой» (термофен).

Инфракрасная — справа, на которой производится демонтаж/монтаж чипа с матплаты/видеокарты и «обычная», с помощью которой подготавливается новый чип для монтажа.

Инфракрасная паяльная нагревает чип с помощью мощного облучателя, расположенного на выносной штанге. На фото облучатель в парковочном положении, на этом фото левее станции на штативе с желтым треугольником значка «HOT!». Эти станции равномерно нагревают чип, точно контролируя температуру, что невозможно сделать с «воздушкой».

Данная ИК станция JОVY SYSTEМS RE-7500 является, наверное, из самой простых, и потому работа с ней сложна. Станция имеет всего один термодатчик, который устанавливается и меряет температуру непосредственно возле чипа. Хорошая станция имеет, как минимум, еще второй датчик измеряющий нагрев матплаты снизу. На RE-7500 легко повредить матплату просто перегрев её — станция не имеет каких-либо функций термостата — по нагреву до заданных температур и выдерживания заданной температуры. Кстати показания температуры в немного китайских градусах, припой плавится при несколько другой температуре, чем должен был бы.

Из остальных инструментов понадобятся припой, пинцеты, салфетки, бокорезы, изопропиловый спирт, щеточка и желательно, но не обязательно, ультразвуковая ванночка.

Прежде, чем ставить паять новый чип, необходимо выпаять старый. Матплата подготавливается — в зоне нагрева удаляются бумажные наклейки с обеих сторон, плата устанавливается и фиксируется на станции, центрируется положение платы так, чтобы чип оказался под верхним нагревателем (облучателем) станции (для удобства у станции есть лазерный прицел (Рис.7)).

Термодатчик устанавливается возле чипа (Рис.8). Если необходимо, то нетермостойкие элементы (например, электролитические конденсаторы), расположенные с обеих сторон платы, закрываются самоклеющейся фольгой (на Рис.7 два куска фольги видны над правой рукой).

Включаем нижний подогрев в режим PREHEAT, станция медленно прогревает до 95-100С. Есть минут 10-15 времени для подготовки нового чипа.

Применяемый бессвинцовый припой плавится при температурах около 210С, а в то время как свинцовый — при 180С. Новый чип уже отреболен (Рис.10) бессвинцовым припоем.

Отреболен (отреболить, накатать шары) — припаяны шары т.е. он готов к монтажу.
К слову чип без шаров каждый видел на примере процессоров Intel (Рис.11).

В последнее время процессоры Intel в ноутбуках впаивают как чип — минус сокет, минус высота сокета. Такое часто встречается в ультратонких ноутбуках.

Температура 210 высока, особенно для такой дешевой ИК станции. Во-первых, чем выше температура плавления, тем выше вероятность, что на этой станции не все шары расплавятся и припаяют чип. Во-вторых — термические деформации матплаты. При нагреве текстолит и металлические проводники в многослойной плате расширяются не одинаково. Бывают случаи, когда платы из тонкого текстолита «ведет» — плата из ровной становится выпуклой, гнутой, скрученной. Такую плату только выбрасывать. Также были случаи разрыва токопроводящих дорожек, пистонов. В совершенных ИК станциях есть профили для нагрева платы по определенным температурным графикам, что позволяет добиться снижения неравномерности деформаций. Если кто заметил на фото, что плата на паяльной станции прижата свинцовыми грузилами — это как раз предосторожность против деформаций.

В-третьих, нагрев самого чипа, если не убьет его, то явно повышает вероятность его выхода из строя в будущем. А при некоторых видах ремонта чип приходится снимать пару раз, например при диагностике дефекта, когда заменой чипа ремонт не завершился или т.п. Поэтому чип надо перереболить на свинцовый припой.

Приступаем к реболингу нового чипа. Чип кладем на салфетку, чтобы не скользил по столу. Покрываем шары «жидким флюсом».

Нагреваем паяльник до… более чем температура плавления бессвинцового припоя. На паяльной станции Lukey 852 удобно работать при 380 китайских градусах. Температура должна быть такой, чтобы припой не приставал к чипу (к его контактным площадкам), а катался во флюсе как ртуть. Но и не угреть чип тоже важно, поэтому не задерживаемся на одном месте долго.

На жало паяльника берется капля обычного свинцового припоя, которая легко «растворяет» бессвинцовые шары. Периодически стряхиваем с жала чрезмерно разросшуюся большую каплю и берем новую. При необходимости мажем флюс.

Через минутку шары сняты, но поверхность неровная. На контактных площадках остатки припоя. Рис.5 не макроснимок(съемка телефоном), но даже на нем заметна «рваная», «угловатая» форма некоторых контактных площадок (на фото чип ATI/AMD и трафарет).

Идеальную поверхность получаем оплеткой. Снова наносим на чип жидкий флюс и, прижав оплетку жалом паяльника, вычищаем поверхность до идеала. Качество легко контролируется пальцем — не должно быть шершавости. Напитавшиеся припоем, участки оплетки откусываем бокорезами.

Теперь чистим от флюса и обезжириваем. Для этого используем зубную щетку и изопропиловый спирт. Смотрим, не осталось ли чего лишнего, если надо, то повторяем шаг с оплеткой.

Наносим на чип очень, ну, очень тонкий слой флюса. Если жидкий флюс не кипящий (высокотемпературный), то им, а иначе пальцем размазываем вязкий. Устанавливаем чип с трафаретом в станок.

Вот так выглядит трафарет. У ATI/AMD практически один и тот же трафарет на несколько поколений чипов. У NVIDIA много разных.

Центрируем трафарет в станке — отверстия напротив контактных площадок чипа.

Сам станок ставится в коробочку, в которую будет с трафарета просыпаться часть шариков. Затем, не измазанные во флюсе шарики, можно высыпать обратно в банку. Экономия.

На трафарет высыпаются шарики и загоняются в лунки специальным шпателём (в комплекте со станком), а затем последние из них — пинцетом. Вот так выглядят еще не припаянные шарики в станке. Они слегка выглядывают из отверстий.

Далее включается «воздушка» на китайские 380 градусов.

С высоты 5 сантиметров над станком обдувается чип в станке для равномерного нагрева. Затем опускаемся на высоту 2-3 сантиметра и по кругу движемся — наблюдаем как «проваливаются» шарики в отверстиях и медленно смещаемся дальше. Но не задерживаемся, если какой-то из шариков из ряда не провалился — он застрял, потом подтолкнем его пинцетом и прогреем. Последними прогреваем шарики в центре под кристаллом. В центре хороший теплообмен с кристаллом и шары расплавятся чуть позже, чем это было с края.

Вот так выглядят шарики после прогрева — они опустились чуть ниже поверхности трафарета менее чем на полдиаметра шарика. Шары из сферической формы приняли форму близкую к полусфере, как на Рис.10. Об этой разнице на снимке мобильным телефоном можно только гадать. Возможно на снимке один или более шаров «не сели».

Кстати на трафарете видна маркировка — чипы NVIDIA GO6200/7600, диаметр отверстий — 0,6 миллиметра. Но и подходит для G8600, работа с которым и показана на этих снимках.

Чип извлекается из станка, трафарет снимается с чипа (лучше пока теплый, а то хорошо приклеивается флюсом к чипу). Проверяем, все ли шары припаялись. Снова моем со спиртом и щеткой. Трём хорошо, лучше чтобы сейчас отскочили плохо припаянные шары.
Если есть, то моем в ультразвуковой ванночке в том же спирте. В ней часто отпадают плохо припаявшиеся шары. Если шары отпали, то возвращаемся на предыдущий шаг — мажем флюс, кладем шары в пустые места, греем. Пару шаров кладутся без трафарета. В конце концов, получаем отреболенный чип, как вначале, но уже на свинцовом припое.

За это время станция прогрела плату до 95-100С. Отколупываем размягчившийся термоклей, которым фиксируется старый чип по углам (по отсутствию клея можно догадаться, что чип ранее снимали/меняли). Переключаем нижний подогрев в режим HEAT, ждем немного до 110С, и включаем верхний нагрев в HEAT. Сидим и смотрим за ползущими цифрами. Станция маломощная, любой сквознячок уносит драгоценное тепло. При 200С внимательно смотрим под чип — когда припой плавится (около 210С), то чип заметно опускается под собственной тяжестью и силой поверхностного натяжения расплавленного припоя, притягивающей чип к плате. Слегка толкаем чип, чтобы убедиться что он «плавает» на расплавившихся шарах и ничто его не держит.

В этот момент вакуумным пинцетом хватаем чип за кристалл и снимаем. Здесь есть большая опасность, что чип мог не прогреться какой-либо из сторон и там припой не расплавился. Либо случайный сквознячок охладил часть чипа. Либо бывает чип залит снизу по углам клеем, который не плавится/не размягчается при нагреве (встречалось на Toshiba). В этом случаем может случиться беда — вместе с чипом отрываются контактные площадки на матплате. Хорошо если это будут пустые — неиспользуемые. Или их можно будет восстановить… Поэтому важно убедиться, что чип «поплыл» на шарах. Когда явно, что припой уже расплавился (температура выше 210С), а чип не опускается и не двигается, то приходится слегка подковыривать приклеенные углы, надеясь, что ничего не оторвет вместе с клеем.

Сняв чип, сразу выключаем верхний подогрев, а нижний переводим в PREHEAT, либо выключаем, в зависимости от дальнейших планов. Осматриваем поверхность и убеждаемся, что все контактные площадки целы. Здесь необходимо повторить ту же процедуру, что и при реболинге чипа — необходимо убрать остатки припоя и получить идеально чистую, ровную поверхность, но теперь это делается с контактными площадками платы. Чаще всего старые шары почти полностью остаются на старом чипе, но иногда наоборот большинство шаров остаются на плате (Рис.27).

Иногда выходит из строя видеопамять (а в ноутбуках ASUS бывает и вся ОЗУ впаяна), её тоже можно поменять, только сначала надо найти неисправную микросхему. (Гомерический хохот)

Для этого точно также удаляем остатки припоя оплеткой. Наносим на контактные площадки под чипом «жидкий» флюс.


Каплей припоя собираем большую часть старого бессвинцового припоя. Оплеткой подчищаем остатки припоя. Всё аналогично Рис.14 -17.

Пальцем контролируем качество. Затем моем поверхность щеткой и спиртом.
Поверхность мажем «вязким» флюсом. Очень тонкий слой размазываем пальцем по поверхности. Важнейшее свойство высокотемпературного флюса — он не должен кипеть. Иначе чип сместится при нагреве.
Кладем чип на матплату согласно ключу, центрируем по линиям. И далее как при демонтаже — прогрев нижним подогревом до 110С. И нагрев совместно с верхним подогревом до температуры плавления припоя. В данном случае это более низкая температура — около 180С. Как только чип опускается на расплавившемся припое, слегка толкаем, чтобы убедиться, что чип плавает на полностью расплавившихся шарах. Также это помогает в некоторых проблемных местах припаяться. Например, под каким-то шаром оказалось много флюса. Выключаем верхний и нижний подогрев. И оставляем остывать. Ускорять охлаждение обдувом не стоит во избежание деформаций некоторых плат.

Затем сборка ноутбука и тестовый запуск.
После такого ремонта чип, прослужит еще долго. Как минимум как предыдущий. А вот проживет ли столько ноутбук — это другой вопрос. Об этом вторая часть статьи. Почему приходится менять чип? И почему ломаются ноутбуки? От следствия переходим к причине.

На этой фотографии я отсортировал замененные за полгода чипы на две башенки. NVIDIA и AMD. Чипсетов Intel было три, поэтому фотографировать их не стал.


Следующую статью хотелось бы посвятить описанию устройства и работы компьютеров принципов взаимодействия систем и компонентов.

Одним из основным составляющим компонентом материнской платы будь то компьютера либо ноутбука является Северный мост (англ. Northbridge; в отдельных чипсетах Intel, также — контроллер-концентратор памяти с английского Memory Controller Hub, рис.1)

MCH является системным контроллером чипсета на материнской плате платформы x86, к которому в рамках организации взаимодействия подключено следующие оборудование:

1. через Front Side Bus — микропроцессор, если в составе процессора нет контроллера памяти, тогда через шину контроллера памяти подключена— оперативная память.

2. через шину графического контроллера — видеоадаптер (в материнских платах нижнего ценового диапазона, видеоадаптер часто встроенный. В таком случае северный мост, произведенный Intel, называется GMCH (от англ. Chipset Graphics and Memory Controller Hub).

Название чипа как «Северный мост» можно объяснить представлением архитектуры чипсета в виде карты. В результате процессор будет располагаться на вершине карты, на севере (рис.3).

Исходя из назначения, северный мост определяет параметры (возможный тип, частоту, пропускную способность):

- системной шины и, косвенно, процессора (исходя из этого — до какой степени может быть разогнан компьютер);

- оперативной памяти (тип — например SDRAM, DDR, DDR2, её максимальный объем);

- подключенного видеоадаптера.

Во многих случаях именно параметры и быстродействие северного моста определяют выбор реализованных на материнской плате шин расширения (PCI, PCI Express) системы.

В свою очередь, северный мост соединён с остальной частью материнской платы через согласующий интерфейс и южный мост. Когда технологии производства не позволяют скомпенсировать возросшее, вследствие усложнения внутренней схемы, тепловыделение чипа, современные мощные микросхемы северного моста помимо пассивного охлаждения (радиатора) для своей бесперебойной работы требуют использования индивидуального вентилятора или системы жидкостного охлаждения, что в свою очередь увеличивает энергопотребление всей системы и требует более мощного блока питания.

Минуя северный мост согласно нашей схеме двигаясь на юг на материнской плате расположен южный мост.

Южный мост (от англ. Southbridge) (функциональный контроллер), также известен как контроллер-концентратор ввода-вывода (от англ. I/O Controller Hub, ICH, рис.2).

рис.2 Southbridge

Обычно это одна микросхема, которая связывает «медленные» (по сравнению со связкой «Центральный процессор-ОЗУ») взаимодействия (например, Low Pin Count, Super I/O или разъёмы шин для подключения периферийных устройств) на материнской плате с ЦПУ через Северный мост, который, в отличие от Южного, обычно подключён напрямую к центральному процессору.

Если взять функциональность, то южный мост включает в себя:

- контроллеры шин PCI, PCI Express, SMBus, I2C, LPC, Super I/O;

- DMA контроллер;

- контроллер прерываний;

- PATA (IDE) и SATA контроллеры;

- часы реального времени (Real Time Clock);

- управление питанием (Power management, APM и ACPI);

- энергонезависимую память BIOS (CMOS);

- звуковой контроллер (обычно AC'97 или Intel HDA).

Опционально южный мост также может включать в себя контроллер Ethernet, RAID-контроллеры, контроллеры USB, контроллеры FireWire, аудио-кодек и др. Реже южный мост включает в себя поддержку клавиатуры, мыши и последовательных портов, но обычно эти устройства подключаются с помощью другого устройства — Super I/O (контроллера ввода-вывода).

Поддержка шины PCI включает в себя традиционную спецификацию PCI, но может также обеспечивать и поддержку шины PCI-X и PCI Express. Хотя поддержка шины ISA используется достаточно редко, она все таки является неотъемлемой частью современного южного моста. Шина SM используется для связи с другими устройствами на материнской плате (например, для управления вентиляторами). Контроллер DMA позволяет устройствам на шине ISA или LPC получать прямой доступ к оперативной памяти, обходясь без помощи центрального процессора.

Контроллер прерываний обеспечивает механизм информирования ПО, исполняющегося на ЦПУ, о событиях в периферийных устройствах. IDE интерфейс позволяет «увидеть» системе жёсткие диски. Шина LPC обеспечивает передачу данных и управление SIO (это такие устройства, как клавиатура, мышь, параллельный, последовательный порт, инфракрасный порт и флоппи-контроллер) и BIOS ROM (флэш).

APM или ACPI функции позволяют перевести компьютер в «спящий режим» или выключить его.

Рис.3 Схема материнской платы

Системная память CMOS, поддерживаемая питанием от батареи, позволяет создать ограниченную по объёму область памяти для хранения системных настроек (настроек BIOS).

Северный и южный мосты материнской платы вкупе составляют одно целое устройство управления всей системой так сказать глаза, уши, руки ЦП. Вкупе эти два чипа называются – чипсет.

Чипсет (англ. chipset) — набор микросхем, спроектированных для совместной работы с целью выполнения набора каких-либо функций. Так, в компьютерах чипсет, размещаемый на материнской плате выполняет роль связующего компонента, обеспечивающего совместное функционирование подсистем памяти, центрального процессора (ЦП), ввода-вывода и других. Чипсеты так можно встретить и в других устройствах, например, в радиоблоках сотовых телефонов.

Чаще всего чипсет современных материнских плат компьютеров состоит из двух основных микросхем северного и южного моста (иногда объединяемых в один чип, т. н. системный контроллер-концентратор (англ. System Controller Hub, SCH):

Иногда в состав чипсета включают микросхему Super I/O, которая подключается к южному мосту по шине Low Pin Count и отвечает за низкоскоростные порты: RS232, LPT, PS/2.

Существуют и чипсеты, заметно отличающиеся от традиционной схемы. Например, у процессоров для разъёма LGA 1156 функциональность северного моста (соединение с видеокартой и памятью) полностью встроена в сам процессор, и следовательно, чипсет для LGA 1156 состоит из одного южного моста, соединенного с процессором через шину DMI.

Создание полноценной вычислительной системы для персонального и домашнего компьютера на базе, состоящих из столь малого количества микросхем (чипсет и микропроцессор) является следствием развития техпроцессов микроэлектроники развивающихся по закону Мура.

В создании чипсетов, обеспечивающих поддержку новых процессоров, в первую очередь заинтересованны фирмы-производители процессоров. Исходя из этого, ведущими фирмами (Intel и AMD) выпускаются пробные наборы, специально для производителей материнских плат, так называемые англ. referance-чипсеты. После обкатки на таких чипсетах, выпускаются новые серии материнских плат, и по мере продвижения на рынок лицензии (а учитывая глобализацию мировых производителей, кросс-лицензии) выдаются разным фирмам-производителям и, иногда, субподрядчикам производителей материнских плат.

Список основных производителей чипсетов для архитектуры x86: Intel, NVidia, ATI/AMD: (после перекупки в 2006 году ATi вошла в состав Advanced Micro Devices), Via, SiS.


Для начала основные определения, которые очень не рекомендуется путать:

· Включается - это после нажатия кнопки загораются светодиоды и начинают работать вентиляторы.

· Стартует - это когда мамка пискает, и на мониторе начинают появляться буковки.

· Загружается - WINDOWS - это когда на мониторе появляется красивая картинка, с бегущим прогресбаром и написано WINDOWS.

Итак, перед нами лежит "мертвый" системник, который включается, но не стартует. Производим первичную диагностику. Выясняем, действительно ли неисправна материнская плата, то есть проверяем работоспособность прочих комплектующих. Сделать это очень просто:

Откидываем клаву, мышку, LPT-шнур принтера и, заодним, все остальное. Оказывается, эти нехитрые устройства тоже могут заставить исправную мамку прикидываться мертвой. Проверяем, не коротит ли кнопка ресет (просто откидываем проводок от гребенки на плате). Проверяем, не коротит ли сама материнская плата на корпус (для этого ее желательно достать из корпуса).

Проверяем Блок Питания (БП), лучше всего ЗАМЕНОЙ на заведомо исправный. Ибо если в нем потекли или высохли фильтрующие электролитические конденсаторы или неисправны мелкие блокировочные конденсаторы, то уровень паразитных выбросов и помех будет таким, что комп не издаст ни звука, хотя индикаторные светодиоды будут светиться как ни в чем не бывало, а кулера - исправно крутиться. Но если заведомо исправного БП под руками нет, то обязательно проверять на соответствие все выходные напряжения и отсутствие мусора осциллографом.

Отключаем всё внутри. Выкидываем память, видяху, все другие платы, оставляем только процессор и спикер. Eсли после включения мамка запищит, то условно можно считать ее живой (BIOS заводится), а неисправность где-то в выдернутых платах. Теперь вставляем обратно память, проверяем - если пищать стало иначе, значит память видится, можно втыкать видяху. Проверяем, должна появиться картинка на мониторе. Поочередно втыкаем остальные платы, после каждой проверяем, подключаем остальные провода и шлейфы - так же проверяем после каждого подключения. Стоит помнить, что мамки с интегрёным видео, даже будучи полностью исправными, без памяти часто прикидываются полным трупом. Здесь же не забыть проверить, правильно ли подсоединен шлейф IDE. Некоторые мамки (в основном старые первопни) не подают признаков жизни, если в них воткнули шлейф наоборот.

Итак, в первую очередь нам необходимо запустить мамку с одним процессором и подключенным динамиком (завести BIOS). Проверить, доходит ли до теста памяти (постоянные длинные гудки).

А теперь примерно, что и как выглядит:

· Две большие квадратные микросхемы в PQFP или BGA-корпусах - северник и южник. Т.к. производителей немного, то с вероятностью 99% можно утверждать, что будет лого nVidia, VIA, SIS, Ali (Uli) или Intelа (вариант - буква I). Северный мост большой, и находится вблизи процессора, южный, как правило, меньше по размерам и дальше от процессора.

· Замечание: чипсет может состоять не только из двух микросхем. Так nForce 3 (4) - одночиповый, а вот 430NX может состоять и из 5 чипов!!!

· Прямоугольная микросхема в PQFP (примерно 100-ножка) обычно в районе разъема флопа или около LPT, COM - это мультик. Бывает от Winbond'а (W83627THF), ASUS'а (ASxxxx, перемаркированный Winbond), ITE (IT8712F), National Semiconductor (PCxxxx). На брендах (в т.ч. и Интелах) может быть квадратной и с кол-вом ног >100 (National?). В последнее время чаще живет в южнике.

· Прямоугольная микруха SSOP с кол-вом пинов от 20 до 48 в районе кварца - клокер. Обычно несет на себе лого ICS или RTM (RTM360-519R).

· SOIC или (T)SSOP только в районе проца/разъема питания и широких дорожек на маме - ШИМ. Analog Integrarion Corp. (AICxxxx, нарисована корона), International Rectifier (IRUxxxx), Intersil (HIPxxxx), Semtech (SCxxxx), Richtek (RTxxxx).

· Внимание, ШИМки может и не быть. На старых мамах были линейные стабилизаторы и, в некоторых случаях, питалово заводится на проц прямо с БП...

· Сороконожка PDIP на первопневых мамах у края платы - контроллер клавы. Все ИМС обозначаются на PCB буквой U, за которой следует номер элемента...

· Маленькая (или не очень) металлическая (или редко пластмассовая) деталька - кварц. На нем написана частота. Обычный набор: 14.318, 20.0000, 40.0000, 60.0000. На PCB обозначается буквой Y с последующим числом (номер кварца от 1 до N).

А вот что бывает из-за памяти:

· Вариант 1.

Память совсем дохлая - мать не стартует (при этом обычно посткод С1). Если видео не интегрированое, то слышен непрерывный писк, если интегрированое - молчит как труп...

· Вариант 2.

Память глючная, ошибки в младших адресах. Мать не стартует, но и не пищит, коды вылазят какие попало, но обычно до 0D (например Award) не доходит. Хотя, если ставить эту планку второй, мать заводится и память можно оттестить.

· Вариант 3.

Память глючная, ошибки в старших адресах. Мать стартует, но виснет при загрузке ОСи или в играх и т.п. Возможна выдача сообщения "BIOS Checksum Error". Тестить, тестить и еще раз тестить...

· Вариант 4.

Различные единичные случаи. Обычно, труднодиагностируемые. Так что надежнее всего проверять установкой заведомоисправной планки.

Самой достойной программой для проверки памяти на текущий момент считается мемтест86+.


Дата добавления: 2015-07-16; просмотров: 387 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Как припаять сломанную ногу процессора| Как определить неисправность материнской платы в домашних условиях.

mybiblioteka.su - 2015-2024 год. (0.026 сек.)