Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

И соединений машин

Читайте также:
  1. А.1 Определение групп однотипности сварных соединений газопроводов
  2. А3 Определение групп однотипности сварных соединений магистральных газопроводов при проведении производственной аттестации технологий сварки
  3. А5 Контроль качества контрольных сварных соединений
  4. Айдок с возлюбленной, только что родившей для него ребенка, жил в местах, огражденных от войны людей и машин. В этих местах всегда было тихо. Это был курортный район долины
  5. Аналітична машина, за задумом Беббіджа, повинна була
  6. Б.2 Испытание сварных соединений труб диаметром до 89 мм включ. на статическое растяжение и сплющивание
  7. Б.4 Механические испытания на излом угловых сварных соединений прямых врезок

 

2.6.1 Методы восстановление посадок

 

Изнашивание поверхностей и старение материала деталей приводит к нарушению исходной посадки, что проявляется в увеличении зазора в соединениях с ним, или уменьшению натяга в соединениях с натягом.

Существуют различные методы восстановления посадок при ремонте машин.

Восстановление посадок регулировкой. В конструкциях некоторых соединений возможна регулировка посадок, например регулировка зазоров у конических роликовых подшипников за счет изменения толщины комплекта прокладок.

3а счет изменения толщины комплекта прокладок регулируют зазор в зацеплении конических шестерен главных передач ведущих мостов тракторов, автомобилей и комбайнов.

Нередко конструкцией механизмов предусматривается автоматическое регулирование зазора, например между тормозными колодками и тормозным барабаном колеса автомобиля. Здесь одна из соединяемых деталей (тормозная колодка) перемещается в сторону компенсации износа по мере его нарастания, поддерживая стабильный зазор. Упрощенный вариант автоматического регулирования зазора — автоматическое поддержание за счет пружины контакта деталей, например щеток и коллектора электрической машины.

Для регулирования зазора в соединении рекомендуют применять натяжные устройства, эксцентриковые механизмы, клиновидные элементы и т. п.

Восстановление посадки регулировкой особенно эффективно в соединениях с резко меняющейся, особенно со знакопеременной, нагрузкой, поскольку энергия удара в зависимости от зазора в соединении возрастает по параболе.

Однако в соединениях типа вал — подшипник, рассчитанных на работу в условиях жидкостного трения, при простой регулировке зазора исходная надежность соединения не восстанавливается, поскольку не устраняется искажение геометрической формы работающих поверхностей. Зазор в соединении опять быстро достигает предельного значения. Этим объясняется тот факт, что конструкция соединения шейка коленчатого вала — вкладыш делается нерегулируемой.

Перестановка деталей в другое положение (позицию). Этот метод основан на использовании симметричного расположения одинаковых по всем параметрам поверхностей, но одна из них всегда или почти всегда оказывается нагруженной и поэтому изнашивается, а другая всегда или почти всегда работает вхолостую. Например, две эвольвентные поверхности зуба шестерни, две поверхности цевочного зацепления зуба ведущей звездочки привода гусеничного полотна трактора, две одинаковые поверхности полевой доски корпуса плуга и т. п. Поэтому при ремонте допускаются перестановка справа налево и наоборот пары шестерня — зубчатое колесо конечной передачи гусеничного трактора, перестановка ведущих звездочек гусеничного полотна поворот полевой доски другой стороной.

Метод эффективен при ремонте втулочно-роликовых цепей. Из-за одностороннего износа валиков и втулок цепь удлиняется в результате увеличения размера между соседними внутренними звеньями. Валики и втулки в пластинах поворачивают на 180° относительно их прежнего положения для работы неизношенными поверхностями, благодаря чему шаг цепи восстанавливается практически до исходного, хотя при этом приходится полностью разбирать цепь.

Метод ремонтных размеров. Метод основан на комплектовании соединений из деталей, отличающихся размерами соединяемых поверхностей от первоначальных, но обеспечивающих начальный зазор (натяг), равный зазору (натягу) нового соединения. Эти размеры, отличающиеся от первоначальных, называют ремонтными. Они могут быть свободными или стандартными,

В случае свободных размеров для достижения начального зазора или натяга в соединении поверхности более дорогой детали обычно обрабатывают до удаления искажения геометрической формы и изготовляют для комплектации соединения менее дорогую деталь под этот размер. Например, отверстие под втулку верхней головки шатуна растачивают до получения цилиндрической формы. Изготовляют втулку под полученный свободный размер с учетом ее посадки с требуемым натягом.

В случае использования стандартного ремонтного размера для достижения начального зазора или натяга в соединении поверхность более дорогой детали обрабатывают не только до выведения следов износа, но и снимают еще некоторый слой материала с целью получения необходимой посадки с заранее изготовленной менее дорогой деталью, имеющей стандартный ремонтный размер. Так обрабатывают шейки коленчатого вала до стандартных ремонтных размеров с целью комплектации их с вкладышами стандартных ремонтных размеров, зеркало гильзы для комплектации с поршнем стандартного ремонтного размера и т. д.

Таким образом, сборка соединений со свободными ремонтными размерами всегда связана с подгонкой «по месту» и ее применяют в случаях, когда важно максимально сохранить материал дорогостоя­щей детали, а изготовление заменяемой детали не связано с большими технологическими затруднениями и оказывается возможным в условиях индивидуального производства. Заменяемую деталь в этом случае можно заранее подготовить только в качестве полуфабриката.

Преимущество стандартных ремонтных размеров перед свободными состоит в том, что в первом случае есть возможность организовать массовое промышленное производство заменяемых деталей и осуществлять ремонт машин по принципу частичной взаимозаменяемости, что существенно сокращает его продолжительность.

Ремонтные размеры валов и отверстий отличаются от номинальных, как правило, на доли миллиметра, т. е. находятся в одном интервале размеров, поэтому допуски остаются прежними. Требования к макрогеометрии, шероховатости, твердости и износостойкости поверхности не меняются.

Какую деталь надо заменить и какую восстановить, решают в основном, исходя из экономических соображений. Более дорогую деталь почти во всех случаях целесообразно оставить и обработать, а дешевую заменить. Следует заметить, что деталь с несколькими соединяемыми поверхностями может выступать в роли заменяемой или восстанавливаемой. Например, поршень по отношению к гильзе — заменяемая деталь, а по отношению к поршневым кольцам увеличенной толщины — восстанавливаемая. Канавки в поршне протачивают под кольца ремонтного размера по толщине. Отверстие в бобышках также может быть развернуто под палец большей размерной группы.

Стандартные ремонтные размеры широко используют для соединений коленчатый вал — вкладыш, гильза — поршень, поршень — поршневой палец, гильза — поршневое кольцо и др.

Число стандартных ремонтных размеров для соединений одного и того же вида, но для машин разных марок неодинаково и зависит от многих факторов: износа деталей, при котором должна быть прекращена эксплуатация соединения; однородности материала детали по глубине от поверхности; точности оборудования и инструмента, применяемого при обработке детали под ремонтный размер и изготовлении заменяемых деталей; конструктивной прочности деталей; ограничений, накладываемых рабочими процессами самих машин, и пр.

К недостаткам метода ремонтных размеров относят: осложнения в организации ремонта, вызванные ограниченной взаимозаменяе­мостью; понижение ресурса соединений из-за возрастания удельных нагрузок (например, из-за уменьшения диаметра шейки коленчатого вала и при одновременном увеличении массы поршня ремонтного размера); необходимость переналадки оборудования; затраты на маркировку.

Метод восстановления посадки соединения постановкой дополнительных деталей. Этот метод — разновидность метода ремонтных размеров. Его применяют при постановке втулок в гнезда под наружные кольца подшипников коренных опор коленчатого вала двигателя ЯМЗ-238НБ; установке полуколец под вкладыши коренных опор коленчатого вала двигателей и закреплении их штифтами; запрессовке сухих гильз или втулок в гильзы, исчерпавшие ресурс последнего стандартного ремонтного размера; установке всевозможных дополнительных колец, накладок и т. п. Метод получает все большее распространение в ремонтной практике, поскольку позволяет «вернуться» при ремонте к номинальным размерам заменяемых деталей (поршней, вкладышей, толкателей и пр.) со всеми вытекающими отсюда положительными моментами, касающимися условий работы соединений, предусмотренных при конструировании. В связи с этим можно также говорить об улучшении условий взаимозаменяемости.

Недостаток этого метода — определенное ухудшение условий теплопередачи, например, от запрессованной сухой гильзы или свернутой втулки к материалу гильзы или блоку цилиндров двигателя, что при прочих равных условиях может приводить к форсированному изнашиванию зеркала или даже задирам.

 

2.6.2 Комплектование деталей

 

Детали комплектуют в специальном отделении, оборудованном стеллажами подставками, столами, передвижными тележками, ящиками, контейнерами и универсальными измерительным инструментом. Туда поступают годные детали из отделения дефектации, со склада восстановленных деталей и новые детали со склада запасных частей.

Комплектовочные работы включают в себя: сортирование деталей, их подбор для сборки соединений в соответствии с техническими условиями; комплектование по номенклатуре и числу в соответствии с принадлежностью к агрегатам и сборочным постам; раскладку в тару; доставку комплектов на сборочные посты согласно такту сборки агрегатов. Это оказывает влияние на качество отремонтированных изделий, длительность производственного цикла и сборки, ритмичность выпуска продукции сборочными постами.

Чтобы повысить эффективность комплектования, надо хорошо знать комплектовочный процесс (накопление, сортирование, комплектование).

Детали накапливают для ритмичной работы постов сборке. Сортирование предусматривает раскладку деталей по принадлежности их агрегатам и сборочным единицам. В приделах агрегата каждой марки детали сортируют по размерным группам, массе, межцентровому расстоянию и др. показателям.

Разбивка деталей на размерные группы перед их сортированием - сложный и ответственный процесс, который влияет на качество сборки, долговечных соединений в эксплуатации и организации сборки. При этом необходимо придерживаться следующих правил: число групп не должно быть больше пяти: допуски на соединяемые детали должны обеспечивать оптимальную посадку при сборке; число деталей в группах должно быть по возможности одинаковым.

Для сортирования используют универсальные средства измерения, специальные приборы и приспособления. Рассортированные по размерным и массовым группам деталей подбирают для соединений. На ремонтных предприятиях детали комплектуют штучным и селективным (групповым) подбором.

Штучный подбор заключается в том, что к одной детали с каким то действительным размером, полученным в результате его измерения, подбирают вторую деталь данного соединения, исходя из допустимого при их сборке зазора иди натяга. Его примером может служить подбор поршня и гильзы двигателя, который обрабатывают с широким полем допусков, вследствие чего, любой поршень не может быть поставлен в любую гильзу. По техническим требованиям на сборку номинальный зазор между гильзой и поршнем должен быть 0,14... 0,40 мм. Эти детали подбирают по зазору с помощью двух щупов: толщина одного равна минимально допустимому, а другого - максимально допустимому зазорам. Если поршень с щупом, равным минимальному зазору, проходит по всей длине гильзы свободно, а с щупом, толщина которого соответствует максимальному зазору, не проходит, то такие детали считают скомплектованными. Щуп закладывают на всю длину юбки поршня в плоскости, перпендикулярно к оси отверстий бобышек.

Гильзу и поршень можно подобрать путем предварительных замеров соединяемых деталей. Например, замеряют диаметр гильзы, тогда диаметр поршня с учетом допустимых зазоров определяют по формулам:

 

d n max = Dц - b min; d n min = Dц- b max, (2.6.2.1)

 

где d n max и d n min - максимальный и минимальный диаметр поршня, мм;

Dц - диаметр гильзы цилиндров мм;

b max и b min - допустимые максимальный и минимальный зазоры, мм.

 

При индивидуальном подборе соединяемых деталей не всегда достигается требуемое качество сборки и затрачивается много времени. Не смотря на эти недостатки, его широко применяют на ремонтных предприятиях, так как он не требует предварительной подготовки к подбору деталей.

 

Таблица 2.6.2.1

Разбивка поршней, поршневых пальцев и шатунов в сборе со втулками

двигателя ЗИЛ -130 на размерные группы

Деталь   Размер   Номинальный размер, мм     Группа  
       
Поршень     Диаметр отверстия под палец   -0,005 -0,015 27,9950 27,9925   27,9925 27,9900   27,9900 27,9875   27,9875 27,9850  
Шатун в сборе     Внутренний диаметр втулки верхней головки шатуна +0,007 -0,003   28,0070 28,0045     28,0045 28,0020     28,0020 27,9995     27,9995 27,9970    
Поршневой палец Наружный диаметр   -0,010 28,0000 27,9975 27,9975 27,9950 27,9950 27,9925 27,9925 27,9900

Примечание: 1. Первую группу маркируют в голубой цвет, вторую - в красный, третью - в белый, четвертую - в черный. 2. В числителе дан размер детали по верхнему, а в знаменателе - по нижнему отклонениям.

Селективный (групповой) подбор характеризуется тем, что в соединяемой детали после их обработки и контроля предварительно сортируют по размерным группам (табл.2.6.2.1), клеймят цифрами, буквами или помечают цветными красками.

При сборке соединений используют детали одной группы. Например, если диаметр первой гильзы цилиндра двигателя относится к группе А, а второй - к группе В, то в первую очередь устанавливают поршень группы А, во вторую - В.

Число размерных групп зависит от конструктивного bк.з. и монтажного bм.з. допусков зазора:

 

i=b к.з./bм.з., (2.6.2.2)

 

где bк.з.=b k max – b k min и bм.з.=b м max - b м min (здесь b k max и b k min - максимальный и минимальный конструктивные допуски зазора, мм;

b м max и b м min - максимальный и минимальный монтажные допуски зазора, мм).

Допуск каждой группы равен конструктивному допуску, деленному на число групп. Размеры детали для каждой группы определяют по верхним и нижним отклонениям.

Пусть число размерных групп 4, тогда допуск размера каждой из них будет равен, 0,01: 4 = 0,0025 мм.

Максимальные и минимальные монтажные зазоры для всех групп при селективном комплектовании буду одинаковыми, и соответствовать техническим требованиям на сборку данного соединения.

Селективный (групповой) метод комплектования применяют в основном для подбора деталей на крупных специализированных предприятиях. Он обеспечивает качество сборки данного соединения, однако требует технической подготовки производства.

Посты комплектования (рис.2.6.2.1) соединений, сборочных единиц и агрегатов объединяют в центральные комплектовочные отделения или специализируют по предметному признаку, располагают на участках: обойном, ремонте кабин, платформы, электрооборудования и др.

Цехи ремонта двигателей и агрегата могут иметь свои комплектовочные участки.

При малых программах ремонта, производственных площадях и запасах деталей часть постов комплектования соединений могут выносить на производственные участки сборки агрегатов.

На передовых ремонтных предприятиях принят следующий порядок движения деталей в производстве. Детали разобранных агрегатов, кроме крупногабаритных укладывают в специальные корзины, в которых они очищаются в моющихся машинах, а затем подаются на дефектацию. Каждая из них в таре иметь свое определенное место. Крупногабаритные детали подают на посты ремонта и сборке. Вместо них в корзины на определенное место вешают жетон с обозначением детали и ее характеристикой (годная, требует ремонта). На постах дефектации негодное изделие изымают.

Годные детали поступают в центральное комплектовочное отделение, а требующие восстановления - в отделение деталей, ожидающих восстановления. Контейнеры с годными деталями доукомплектовываются недостающими и подаются на посты сборки агрегатов и машин. Организация работ по данной схеме способствует уменьшению перегрузок деталей, улучшению снабжения постов сборки комплектами деталей по принадлежности к агрегатам, сохранению приработанных пар, планомерной загрузке постов восстановления и изготовление деталей.


 

 

 

2.6.3. Дефектация деталей

Дефектация - операция технологического процесса ремонта машины, заключающаяся в определении степени годности бывших в эксплуатации деталей и сборочных единиц к использованию на ремонтируемом объекте. Она необходима для выявления у деталей дефектов, возникающих в результате изнашивания, коррозии, усталости материала и других процессов, а также из-за нарушений режимов эксплуатации и правил технического обслуживания.

В результате трения и изнашивания деталей в конкретных условиях эксплуатации изменяются геометрические параметры, шероховатость рабочих поверхностей и физико-механические свойства поверхностных слоев материала, а также возникают и накапливаются усталостные повреждения.

Под изменением геометрических параметров деталей понимают изменение их размеров, формы и взаимного расположения поверхностей. К нарушениям формы относят: неплоскостность, непрямолинейность, овальность, конусность и т.д., к отклонениям взаимного расположения поверхностей - непараллельность плоскостей и осей вращения поверхностей» торцовое и радиальное биение, несоосность и т.д.

Усталостные повреждения нарушают сплошность материала, способствуют возникновению микро-и макро трещин, выкрашиванию металла рабочих поверхностей и излому деталей.

Изменение физико-механических свойств материала - нарушение структуры материала, а также уменьшение или увеличение твердости, прочности, корцитивной силы ферромагнитных материалов и т.д.

Нарушение режимов эксплуатации и правил ТО могут приводить к схватыванию трущихся поверхностей, короблению деталей, возникновению трещин, обломов фланцев крепления и др.

Степень годности деталей к повторному использованию или восстановлению устанавливают по технологическим картам на дефектацию. В них указаны: краткая техническая характеристика детали (материал, вид термической обработки, твердость, размеры восстановления, отклонение формы и взаимного расположения поверхностей), возможные дефекты и способы их устранения, методы контроля, допустимые без ремонта и предельные размеры. Оценку проводят сравниванием фактических геометрических параметров деталей и других технологических характеристик с допустимыми значениями.

Номинальными считают размеры и другие технические характеристики деталей, соответствующие рабочим чертежам.

Допустимыми считают размеры и другие технические характеристики детали при которых она может быть поставлена на машину без восстановления и будет удовлетворительно работать в течении предусмотренного межремонтного ресурса.

Предельными называют выбраковочные размеры и другие характеристики детали.

Часть деталей с размерами, не превышающими допустимые, могут быть годными в соединении с новыми (запасными частями), восстановленными или с деталями бывшими в эксплуатации. По этому в процессе контроля их сортируют на пять групп, и маркируют краской соответствующего цвета: годные (зеленым), годные в соединении с новыми или восстановленными до номинальных размеров деталями (желтым), подлежащие ремонту в данном ремонтном предприятии (белым), подлежащие восстановлению на специализированных ремонтных предприятиях (синим) и негодные - утиль (красным). Годные детали транспортируют в комплектовочное отделение или на склад, требующие ремонта - на склад деталей, ожидающих ремонта, или непосредственно на у часики но их восстановлению, негодные - на склад утиля.

У деталей обычно контролируют только те параметры, которые могут изменяться в процессе эксплуатации машины. Многие из них имеют несколько дефектов, каждый из которых требует проверки. Для уменьшения трудоемкости дефектации необходимо придерживаться той последовательности контроля, которая указана в технологических картах, где в начале приведены наиболее часто встречающиеся дефекты.

Методы контроля геометрических параметров деталей. Размеры, форму и взаимное расположение поверхностей деталей обычно измеряют. Многообразие объектов требует применения различных контрольно - измерительных средств и методов измерения.

При дефектации используют следующие методы измерения: абсолютный, когда прибор показывает абсолютное значение измеряемого параметра - и относительный -01клонение измеряемого параметра от установленного размера.

Искомое значение можно отсчитывать непосредственно по прибору (прямой метод) или по результатам измерения другого параметра, связанного с искомым непосредственной зависимостью (косвенный метод). Примером последнего служит применение ротаметров для определения степени годности прецизионных деталей дизельной топливной аппаратуры (втулок плунжеров, седел клапанов, корпусов распылителей). Здесь непосредственно измеряется расход воздуха в зазорах между насадкой ротаметра и отверстием прецизионной детали. Чтобы установить размер отверстия, нужно использовать зависимость между зазором и расходом воздуха.

По числу измеряемых параметров методы контроля подразделяют на дифференциальные и комплексные. При первом измеряют значение каждого параметра, при втором - суммарную погрешность отдельных геометрических размеров изделия.

Примером комплексного метода может служить определение степени годности подшипников качения по радиальному зазору. Изменение последнего связано с износом беговых дорожек внутреннего и наружного колец, а также элементов качения (шариков, роликов).

Если измерительный элемент прибора непосредственно соприкасается с контролируемой поверхностью, то такой метод называют контактным, а если нет - бесконтактным. Наиболее часто применяют следующие средства измерения: калибры, универсальный измерительный инструмент и специальные приборы.

Калибры - это бесшкальные измерительные инструменты для контроля отклонений размеров, формы и взаимного расположения поверхностей деталей без определения численного значения измеряемого параметра. Широко распространены предельные калибры, ограничивающие крайние предельные размеры деталей и распределяющие их на три группы: годные, подлежащие восстановлению и негодные.

Универсальные инструменты и приборы служат для нахождения значения контролируемого параметра в определенном интервале его значений. Обычно применяют следующие измерительные средства: штриховые инструменты с нониусом (штангенциркуль, штангенглубиномер, штангенрейсмус и штангензубомер), микрометрические (микрометры, микрометрический нутромер и глубиномер), механические приборы (миниметр, индикатор часового типа, рычажная скоба и рычажный микрометр), пневматические приборы давления (манометры) и расхода (ротаметры).

Универсальный измерительный инструмент служит для определения износа резьб (резьбовые микрометры, резьбовые микрометрические нутромеры и др.), а также зубчатых и червячных колес (шагомеры, биениемеры и др.).

Специальные измерительные средства предназначены для контроля конкретных деталей с высокой производительностью и точностью. К ним относят, например, приборы для проверки изгиба и скрученности шатунов и радиального биения подшипников качения, поправки для проверки соосности гнезд коренных подшипников блока цилиндров и др.

При выборе средства измерения необходимо учитывать его метрологические характеристики (цена и интервал деления шкалы, точность отсчета, погрешность и пределы измерения), а также точность изготовления измеряемого элемента детали (после допуска). Нарис. 2.6.3.1. показано номограмма для его выбора в зависимости от параметра измеряемого элемента детали и значения допуска на изготовление.

Методы и средства выявления несплошности материала деталей. Дефекты несплошности материала деталей, бывших в эксплуатации, можно условно разбить на две группы: явные и скрытые. Явные дефекты - это трещины, обломы, пробоины, смятие, коррозия. Их чаще всего обнаруживают внешним осмотром невооруженным глазом, через лупу 5... 10-кратного увеличения или ощупыванием. Для обнаружения скрытых дефектов применяют следующие методы контроля (дефектоскопии): капиллярные, обнаружением подтекания газа или жидкости, магнитные и акустические.

Для нахождения производственных дефектов, возникающих в процессе изготовления деталей, на крупных ремонтных предприятиях используют радиационный, рентгеновский и др.

Капиллярный метод предназначен для выявления нарушений сплошности поверхности детали (трещин), изготовленной из различных материалов (ферромагнитных и неферромагнитных сталей, жаропрочных, титановых, алюминиевых, магниевых сплавов, изделий из стекла, керамики и металлокерамики). Он служит также для определения производственных дефектов (шлифовочных и термических трещин, волосовин, пор и др.).

Этот метод обладает высокой чувствительностью(табл.2.6.3.1) и простой технологией контроля. Его сущность состоит в следующем. На очищенную поверхность детали наносят специальную жидкость (пенетрант) и в течении некоторого времени выдерживают, с тем, чтобы она успела проникнуть в полости дефекта.

 

Рис.2.6.3.1 Приемы контроля деталей капиллярным методом с

применением проявителя:

а - трещина, заполненная проникающей жидкостью; б - жидкость с поверхности детали удалена; в - нанесен проявитель, трещина выявлена; 1 - деталь; 2 – полость трещины; 3 – проникающая жидкость; 4 - проявитель; 5 - след трещины.

 

Затем с детали удаляют излишки жидкости и просушивают. Жидкость остается только в полости дефекта.Для его выявления на поверхность изделия наносят проявляющий материал,который способствует выходу жидкости из полости (трещины) в результате адсорбции проявляющим веществом либо диффузии в него.

Таблица 2.6.3.1

 

Характеристика дефектов, мкм. при капиллярных методах их выявления

Метод Раскрытие Глубина Протяженность
Люминесцентный:      
Сорбционный   0,03 0,5
Диффузионный   0,01 0,3
Цветной (диффузионный)   0,01 0,3
Люминесцентно –цветной (диффузионный)   0,01 0,1

При сорбционном способе на поверхность детали наносят сухой порошок (сухой метод) или порошок в виде суспензии (мокрый способ). За счет сорбционных сил проникающая жидкость извлекается на поверхность изделия и смачивает проявитель.

При диффузионном способе на поверхность детали наносят специальное покрытие, в которое диффундирует проникающая жидкость из полости дефекта. Этот способ более чувствителен, чем сорбционный, и его применяют для обнаружения мелких трещин.

Для получения контрастного индикаторного отпечатка дефекта на фоне исследуемой поверхности в состав проникающей жидкости вводят свето - и цветоконтрастные вещества. Если в состав пенетранта входят вещества, способные флуоресцировать при облучении ультрафиолетовым светом, то такие жидкости называют люминесцентными, а сам-метод обнаружения дефектов - люминесцентным методом дефектоскопии, В состав этой жидкости могут входить как естественные, так и искусственно приготовленные вещества, называемые люминофорами. Если в пенетранте содержаться красители, видимые при дневном свете, то такие жидкости называют цветными, а сам метод - цветным методом дефектоскопии.

Капиллярные методы дефектоскопии основаны на способности жидкости втягиваться в сквозные мельчайшие и несквозные каналы (капилляры). При попадании жидкости в капилляр ее свободная поверхность искривляется (образуется мениск), в результате чего возникает дополнительное давление жидкости в капилляре, отличающееся от внешнего давления (воздуха). Значение этого давления зависит от коэффициента поверхностного натяжения и радиуса канала.

Для проникновения жидкости в дефект необходимо, чтобы жидкость хорошо смачивала поверхности, а размеры дефекта (канала) создавали возможность жидкости образовывать мениск.

Технология контроля изделий капиллярньми методами из следующих операций: очистки детали от маслянисто-грязевых и других загрязнений, нанесения пенетранта, выявления дефекта и окончательной очистки.

В ремонтном производстве при использовании люминесцентного метода дефектоскопии в качестве пенетрантов применяют жидкости различного состава. Их наносят с помощью пульверизатора, окунанием в раствор или мягкой кистью. После выдержки детали в течение нескольких минут (не более 5) излишки жидкости удаляют, протирая поверхность ветошью, или промывают струёй холодной воды под давлением 0,2 Мпа с последующей сушкой.

Далее приступают к выявлению дефекта. Чаще всего применяют самопроявляющийся способ, при котором после пропитки и очистки деталь нагревают, что способствует быстрому выходу проникающей жидкости из дефекта и растеканию ее по краям трещины. Затем деталь помещают в дефектоскоп и облучают ультрафиолетовыми лучами. Источником ультрафиолетовых лучей служат ртутно - кварцевые лампы (ПРК-2, ПРК-4 и ПРК-7), свет от которых пропускают через светофильтры типа УСФ (УСФ-3 и УСФ-6). Промышленность выпускает переносные (КД-31Л, КД-32Д КД-ЗЗЛ) и стационарные (ЛД-2, ЛД-3, ЛДА-3 и ЛД-4) дефектоскопы(рис.2.6.3.2).

 

 

Рис. 6.3.2 Схема люминесцентного дефектоскопа:

1 – рефлектор; 2 – ультразвуковой светофильтр; 3 – ртутно- кварцевая лампа; 4 – высоковольтный трансформатор; 5 – силовой трансформатор; 6 – контролируемая деталь.

 

При самопроявляющемся способе деталь можно также погрузить в раствор люминофора в быстроиспаряющемся органическом растворителе, выдержать некоторое время и вынуть. После испарения растворителя на краях остаются кристаллы люминофора, которые ярко светятся при облучении ультрафиолетовыми лучами.

Для проявления дефектов широко применяют сорбционный метод. В качестве проявителей используют сухие порошки (каолин, мел и др.) и их суспензии в воде или органических растворителях (керосин, бензин и др.), а также быстросохнущие пигментированные или бесцветные растворы красок и лаков, которые наносят на поверхность детали после пропитки пенетрантом.

Так, при использовании пенетранта ЛЮМ-А для проявления применяют раствор белой нитроэмали «ЭКСТРА» - 30 %, медицинского коллодия - 30 и ацетона 40 %, а при ЛЮМ-Б- бентонита -0,72... 2,21 %, каолина-6,67... 10 и воды - 92... 87%.

Для цветного метода дефектоскопии в качестве пенетрантов служат составы: керосин - 800 мл, нориол А - 200мл, судан красный 5С - Юг/л; спирт - 90%, эмульгатор ОП-7 - 10 % с добавлением родамина С - 30г/л.

В качестве проявителей применяют сорбенты в виде суспензий и белые проявляющиеся лаки.

После проявления дефектов детали очищают от проявителя. Проявители на основе лаков, нитроэмалей и коллодия удаляют раствором 80 %-го спирта и 20 %-го эмульгатора ОП-7.

Суспензии смывают 1 %-м раствором эмульгатора ОП-7 или ОП-10 в воде.

Обнаружение подтекания газа или жидкости необходимо для проверки герметичности пустотелых деталей: блоков цилиндров, головок блоков цилиндров, баков, водяных и масляных радиаторов, камер шин, трубопроводов шлангов, поплавков карбюраторов и др. Его широко применяют для контроля качества сварных швов. Степень герметичности определяют по утечке газа или жидкости в единицу времени, которую регистрируют с помощью приборов, в большинстве случаев место дефекта определяют визуально.

Методы контроля подразделяют на капиллярные, компрессионные и вакуумные.

Для дефектоскопии деталей, поступающих в ремонт, применяют способы керосиновой пробы (капиллярный метод), гидравлический и пневматический (компрессионный).

Керосин обладает хорошей смачивающей способностью, глубоко проникает в сквозные дефекты диаметром более 0,1 мм. При контроле качества сварных швов на одну из поверхностей изделия наносят керосин, а на противоположную - абсорбирующее покрытие (350...450 г суспензии молотого мела на 1л воды). Наличие сквозной трещины определяют по желтым пятнам керосина на меловой обмазке.

При гидравлическом методе внутреннюю полость изделия заполняют рабочей жидкостью (водой), герметизируют, создают насосом избыточное давление и выдерживают деталь некоторое время. Наличие дефекта устанавливают визуально по появлению капель воды или отпотеванию наружной поверхности.

Пневматический способ нахождения сквозных дефектов более чувствителен, чем гидравлический, так как воздух легче проходит через дефект, чем жидкость. Во внутреннюю полость деталей закачивают сжатый воздух, а наружную поверхность покрывают мыльным раствором или погружают деталь в воду. О наличии дефекта судят по выделению пузырьков воздуха. Давление воздуха, закачиваемого во внутренние полости, зависит от конструктивных особенностей деталей и обычно равно 0,05... 0,1 Мпа.

Магнитный метод применяют для обнаружения дефектов в деталях, изготовленных из ферромагнитных материалов. Так выявляют поверхностные трещины или подповерхостные включения с иной, чем у основного материала, магнитной проницаемостью. Метод получил широкое распространение из-за высокой чувствительности, простоты технологических операций и надежности. Он основан на явлении возникновения в месте расположения дефекта магнитного поля рассеивания.

Магнитный поток, встречая на своем пути дефект с низкой магнитной проницаемостью по сравнению с ферромагнитным материалом детали, огибает его. Часть магнитных силовых линий выходит за пределы детали(рис.6.3.3), образуя поле рассеивания.

Наличие последнего, а следовательно, и дефекта обнаруживают различными способами (магнитопорошковый, магнитографический и феррозондовый).

При магнитопорошковом способе для обнаружения магнитного потока рассеивания используют магнитные порошки (сухой способ) или их суспензии (мокрый способ). Проявляющийся материал наносят на поверхность изделия. Под действием магнитного поля рассеивания частицы порошка концентрируются около дефекта. Форма его скоплений соответствует очертанию дефекта.

 

Рис. 2.6.3.3 Схемы возникновения магнитных полей рассеивания

при намагничивании;

а - продольном; б - циркулярном; 1-трешина; 2-неметаллическое включение.

 

Сущность магнитографического метода заключается в намагничивании изделия при одновременной записи магнитного поля на магнитную ленту, которая покрывает деталь, и последующей расшифровке полученной информации.

Для обнаружения дефектов феррозондовьш способом применяют феррозондовые преобразователи.

При дефектации деталей, поступающих в ремонт, наиболее распространен магнитопорошковый способ. Технология определения дефекта состоит из следующих операций: очистки детали от загрязнений; подготовки суспензии (мокрым способом); намагничивания контролируемой детали; осмотра поверхности детали с целью выявления мест, покрытыми отложениями порошка; размагничивание детали.

Намагниченность деталей должна быть достаточной для создания около дефекта магнитного поля рассеивания способного притягивать и удерживать частицы порошка. Через детали пропускают электрический ток или помещают их в магнитное поле соленоида. Различают три способа намагничивания: полюсное, циркулярное и комбинированное.

Полюсным намагничиванием создают продольное магнитное поле (вдоль детали). Деталь помещают между полюсами электромагнита (постоянного магнита) или в магнитное поле соленоида. Это намагничивание применяют для выявления дефектов расположенных перпендикулярно продольной оси детали или под углом к ней не более 20... 25 градусов.

Циркулярным намагничиванием создают магнитное поле, магнитные силовые линии которого расположены в виде замкнутых концентрических окружностей. Через деталь пропускают электрический ток. При необходимости обнаружения дефекта на внутренней цилиндрической поверхности ток пропускают через стержень или кабель из немагнитного материала (медь, латунь, алюминий), помещенный в отверстие детали. Это намагничивание служит для нахождения дефектов расположенных вдоль продольной оси детали или под небольшим углом к ней.

Комбинированное намагничивание заключается в одновременном воздействии на деталь двух взаимно перпендикулярных нолей. В результате их сложения образуется результирующее магнитное поле, величина и направление которого зависят от вектора магнитной напряженности каждого из слагаемых. Для получения комбинированного магнитного поля обычно через деталь пропускают электрический ток, создавая в ней циркулярное магнитное поле, и одновременно помещают в соленоид (или электромагнит), создавая продольное магнитное поле.

Магнитные силовые линии результирующего поля направлены по винтовым линиям к поверхности изделия, что позволяет обнаруживать дефекты разной направленности.

В магнитном поле или в поле остаточной намагниченности выявляют дефекты с помощью магнитного порошка или суспензии. В магнитном поле определяют дефекты деталей, изготовленных из магнитномягких материалов (Сталь 3, сталь 10, сталь 20 и др.), обладающих небольшой коэрцитивной силой (напряженностью магнитного поля, необходимого для полного размагничивания материала).

При контроле в ноле остаточной намагниченности деталь предварительно намагничивают и после снятия намагничивающего поля определяют дефект. Этот способ применяют для деталей, изготовленных из магнитожестких материалов легированных и высокоуглеродистых сталей, подвергнутых термообработке. Его преимущество заключается в простоте и универсальности визуального контроля и отсутствии прожогов на деталях а местах контакта с электродами дефектоскопа.

Комбинированное намагничивание проводят только в приложенном магнитном поле, а циркулярное и полюсное — в приложенном поле и в поле остаточной намагниченности.

Для намагничивания деталей может быть использован как переменный, так и постоянный ток. Переменный ток служит для нахождения поверхностных дефектов и размагничивания деталей. Действие магнитного поля переменного тока ограничивается поверхностными слоями изделия.

Постоянный ток применяют для выявление подповерхостных дефектов. Создаваемое им магнитное ноле однородно и проникает достаточно глубоко в деталь.

Для определения дефекта большое значение имеет правильный выбор напряженности магнитного поля. Чрезмерно большая напряженность приводит к осаждению магнитного порошка но всей поверхности изделия и появлению «ложных» дефектов, а не достаточное — снижению чувствительности методов. При контроле приложенном магнитном поле на поверхности детали она должна находиться в пределах 1590...3979 А/н, а на остаточную намагниченность приходится 7958...15915А/н.

Сила тока, А, при циркулярном намагничивании цилиндрических деталей:

 

I = 0,25 Hd, (2.6.3.1)

где Н - напряженность магнитною поля, А/м;

d - диаметр детали, мм.

Для тонких пластин и дисков сила тока, А,

 

I = 0,16 Нb, (6.3.2)

где, b - диаметр диска или ширина пластины, мм.

При полюсном намагничивании в соленоиде сила тока, А, пропускаемого через его обработку,

, (6.3.3)

где, D - средний диаметр соленоида, cм;

l - длина соленоида, см;

п - число витков соленоида.

 

Для индикации дефектов применяют ферромагнитные порошки с большой магнитной проницаемостью и малой коэрцитивной силой. Порошок магнетита (Fe3O4) черного или темно-коричневого цвета используют для контроля деталей со светлой поверхностью, а порошок оксида железа (Fe2O3) буро-красного цвета - с темной поверхность. Зернистость порошка существенно влияет на обнаружение дефектов и должна быть 5-10 мкм.

Магнитную суспензию приготовляют, используя керосин, трансформаторное масло, смесь минерального масла с керосином и водные растворы некоторых веществ. На 1 литр жидкости добавляют 30 - 50 г магнитного порошка.

После контроля все детали, кроме бракованных, размагничивают. Восстановление не размагниченных деталей механической обработкой может привести к повреждению рабочих поверхностей из-за притягивания стружки. Не следует размагничивать детали, подвергающиеся при восстановлении нагреву сварочно-наплавочными и другими способами до температуры 600-700 градусов С.

Детали размагничивают, воздействуя на них переменным магнитным полем, изменяющимся от максимального значения напряженности до нуля.

Крупногабаритные детали (коленчатые и распределительные валы и др.) размагничивают, пропуская через них ток, постепенно уменьшая его значение до нуля. Детали с отношением длинны к ширине, равным более пяти, размагничивают перемещением их чрез открытый соленоид.

Короткие изделия с большим поперечным сечением размагничиваются плохо. Поэтому их предварительно соединяют в пакет и располагают вдоль оси соленоида.

Степень размагниченности контролирует, осыпая детали стальным порошком. У хорошо размагниченных деталей порошок не должен удерживаться на поверхности. Для этих же целей применяют приборы ПКР - 1, снабженные феррозондовыми полюсоискателями.

Для контроля деталей магнитопорошковым способом серийно выпускают стационарные, переносные и передвижные дефектоскопы. Последние включают в себя: источники тока, устройства для подвода тока, намагничивания деталей и для нанесения магнитного порошка или суспензии; электроизмерительную аппаратуру. Стационарные приборы (УНДЕ-2500, ХМД-10П, МД-5 и др.) характеризуются большими мощностью и производительностью. На них можно проводить все виды намагничивания

В ремонтном производстве широко распространены переносные и передвижные магнитные дефектоскопы (ПМД-68, ПМД-70, ПМД-77, ПМД-ЗМ, М-12, М217 и МДВ). Они имеют относительно небольшие массу, габариты и дают возможность получать магнитные поля достаточной напряженности.

Ультразвуковой метод - разновидность акустических методов контроля дефектов. Метод основан на свойстве ультразвуковых колебаний (волн) прямолинейно распространяться в однородном твердом теле и отражаться от границ раздела сред с различными акустическими сопротивлениями, в том числе нарушенной сплошности материала (трещин, раковин, расслоений и др.).

В практике чаще всего применяют теневой и импульсный эхо-методы дефектоскопии.

Теневой метод основан на сквозном прозвучивании. Ультразвуковые колебания (УЗК) вводя в деталь с одной стороны, для чего служит пьезоизлучатель 2 (рис.2.6.3.4)и генератор 1.

 

 

Рис.6.3.4 Схема установки ультразвуковой дефектоскопии теневым методом:

1 – генератор, 2 – пьезоизлучатель, 3 – изделие, 4 – дефекты,

5 – пьезоприемник, 6 – усилитель, 7 – индикатор.

 

Колебания принимаются пьезоприемником 5, расположенном с противоположной стороны детали.

При отсутствии в детали дефектов, колебания прошедшие через нее, будут восприняты и преобразованы в электрический сигнал пьезоприемником, усилены усилителем б и поданы на индикатор (электронно-лучевую трубку осциллографа) почти без изменений амплитуды. Если на пути пучка УЗК встречается дефект, то амплитуда на экране прибора будет меньше исходного значения. Мощность воспринятого сигнала зависит от площади сечения пучка колебаний, площади сечения дефекта и глубины его залегания. В случае если дефект полностью перекроет пучок, показания прибора будут равны нулю.

Недостаток этого метода заключается в необходимости доступа к изделию с двух сторон, что не всегда возможно, а так же в необходимости синхронного перемещения пьезоизлучателя и пьезоприемника по поверхности детали.

Импульсный эхо-метод в отличие от теневого основан на посылке деталь излучения в виде коротких импульсов, регистрации интенсивности и времени, отраженных от дефектов и границ детали сигналов (эхо-сигналов). Ультразвуковые импульсы(рис.2.6.3.5.) посылаются в изделие один за другим.

При этом между импульсами есть промежутки времени, называемые паузами. Периодом импульсов называют время, мкс, от начала действия одного импульса до начала следующего, т.е.

 

T = l + t, (2.6.3.4)

 

где, 1- длительность импульса, мкс; t - пауза, мкс

 

Рис.6.3.5 Схема импульсов ультразвуковых колебаний, посылаемых в

контролируемую деталь

 

Импульсы колебаний подаются и воспринимаются одной пьезоголовкой. Отражаясь от дефекта или границ раздела сред, они воспринимаются пьезоэлементом в периоды пауз. Для того чтобы эхо-сигналы не попали на искательную головку в период, когда он работает как излучатель, длительность пауз должна быть в 2...3 раза больше длительности импульсов. Электрические колебания звуковой частоты, создаваемые генератором 3(рис.2.6.3.6), пройдя через генератор 2 импульсов, подаются на пьезоэлемент искательной головки 6, где преобразуются в ультразвуковые. Одновременно импульс от генератора 2 подается на горизонтальные пластины электронно-лучевой трубки 5 осциллографа, вычерчивая на экране зондирующий (начальный) импульс А. Ультразвуковые колебания, пройдя через деталь 7, отражаются от ее противоположной стороны (поверхности раздела сред), воспринимаются пьезоэлементом искательной головки и преобразуются им в переменные электрические сигналы. Последние, усиливаются усилителем 1. Далее колебания подаются на горизонтальные пластины осциллографа, вычерчивая на экране импульс В.

Рис.2.6.3.6 Блок - схема импульсного ультразвукового дефектоскопа:

1-усилитель; 2-генератор импульсов; 3-задающий генератор; 4-генератор

развертки; 5-электронно лучевая трубка; 6- искательная головка;

7-контролируемая деталь; 8-пучок ультразвуковых волн;

9-дефект; а -начальный импульс; б - импульс от дефекта; в - концевой (данный) импульс.

 

Если в детали есть дефект, то ультразвуковой импульс отразится от него раньше, чем от противоположной поверхности изделия. Этот импульс будет воспринят пьезоэлементом, преобразован, усилен и подан на электронно-лучевую трубку осциллографа. В результате луч последнего, прочертит на экране между пиками А и В третий пик Б, свидетельствующий о наличии дефекта.

Аппаратура для ультразвукового контроля включает в себя: искательную головку, которую содержит пьезоэлемент для излучения и приема УЗК; электронный блок; вспомогательные устройства.

Искательные головки(рис.2.6.3.7) разделяют на три типа: прямые, наклонные и раздельно-совмещенные.

 

а б в

Рис.2.6.3.7 Схемы ультразвуковых преобразователей искательных

головок:

а – прямого; б – наклонного; в – раздельно-совмещенного; 1 – корпус;

2 – демпфер; 3 – пьезопластина; 4 – защитное донышко (протектор);

5 – призма; 6 – токопровод; 7 – акустический экран.

 

Первые предназначены для ввода в изделие продольных звуковых волн, перпендикулярных к поверхности изделия, вторые - для ввода в изделие комбинаций УЗК с преобладанием (в зависимости от поставленной цели) поверхностных, продольных или поперечных волн и третьи - для ввода пучка продольных волн под определенным углом к плоскости, перпендикулярной к поверхности детали.

Тип волны зависит от угла ввода, который может изменяться.

Применение таких головок дает возможность обнаруживать не только внутренние дефекты, но и наружные, например усталостные трещины различного характера.

Пучок 4(рис.2.6.3.8) продольных волн введен в изделие через призму 2 искательной головки.

Рис.2.6.3.8. Схема контроля кромок лопаток поверхностными волнами:

1 – лопатка; 2 – призма головки; 3 – пьезопластина; 4 – пучок продольных УЗК; 5 – поверхностные волны; 6 –экран дефектоскопа; Тр – трещина на кромке; t – глубина проникновения поверхностных волн

С помощью поверхностных волн 5 обнаруживают трещины Тр на кромке лопатки 1. Раздельно - совмещенные головки вводят пучок продольных волн под углом 5... 10 градусов к плоскости, перпендикулярной к поверхности изделия.

Основным элементом всех искательных головок служит пьезопластина. Ее толщина равна половине длинны волны излучаемых ультразвуковых колебаний.


Дата добавления: 2015-12-01; просмотров: 30 | Нарушение авторских прав



mybiblioteka.su - 2015-2024 год. (0.065 сек.)