Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Одномерные модели вытеснения несмешивающихся жидкостей

Приток к скважине в пласте неограниченных размеров | Круглый горизонтальный пласт с открытой внешней границей | Круглый горизонтальный пласт с закрытой внешней границей | Периодически работающая скважина | Определение коллекторских свойств пласта по данным исследования скважин нестационарными методами | Уравнение Лейбензона | Основные характеристики многофазной фильтрации | Исходные уравнения многофазной фильтрации | Потенциальное движение газированной жидкости | Некоторые выводы |


Читайте также:
  1. A) проанализируйте модели образования слов, прочтите и переведите слова и словосочетания, созданные на их основе.
  2. Benefits of simulations- Преимущества моделирования
  3. CRON модели для газетной и газетно-коммерческой печати
  4. D-моделирование) автобусной остановки
  5. А) проанализируйте модели образования слов, прочтите и переведите слова, созданные на их основе.
  6. Аддитивные и субтрактивные цветовые модели
  7. БИЗНЕС-МОДЕЛИ ОНЛАЙНОВЫХ СМИ

 

Наиболее разработана в настоящее время теория одномерного движения двухфазной жидкости в пористой среде. Основные допущения этой теории состоят в следующем:

· жидкости предполагаются несмешивающимися (взаимно нерастворимыми);

· жидкости считаются несжимаемыми, а пористая среда – недеформируемой; фазовые переходы отсутствуют; коэффициенты вязкости фаз постоянны;

· относительные фазовые проницаемости и капиллярное давление являются известными однозначными функциями насыщенности;

· гистерезисные явления не учитываются (рассматриваются только однонаправленные процессы).

  Рис. 5.7. Схема одномерной двухфазной фильтрации с учетом силы тяжести

Полная система уравнений. Основываясь на этих допущениях, выведем полную систему уравнений двухфазной фильтрации в однородной пористой среде с учетом капиллярных и гравитационных сил.

В случае прямолинейно-параллельного течения вдоль оси х (рис.5.7) уравнения неразрывности (5.9) для фаз принимают вид

, . (5.25)

 

Обобщенный закон Дарси (5.10) сводится к уравнениям

, (5.26)

.

Здесь a – угол наклона оси х к горизонту (рис. 5.8); r1 и r2 – плотности фаз.

Неизвестные характеристики течения s, u1, u2, p1 и p2 зависят от координаты х и времени t.

Уравнения (5.25), (5.26) с учетом дополнительных соотношений образуют замкнутую систему для случаев линейного течения, являющуюся основой для решения задач вытеснения одной жидкости другой. Характерной особенностью данной системы является то, что её можно свести к одному уравнению для насыщенности.

Знание распределения насыщенности в пласте позволяет проанализировать эффективность вытеснения нефти или газа несмешивающейся с ними жидкостью.

(5.27)

,

где u=u1+u2; Dr=r2-r1;

функция Баклея–Леверетта или функция распределения потоков фаз

; (5.28)

.

Уравнение (5.27) представляет собой сложное нелинейное уравнение параболического типа второго порядка и точное решение получено лишь для некоторых сравнительно простых частных случаев.

Начальные и граничные условия. При решении конкретных задач для уравнения изменения насыщенности должны быть сформулированы соответствующие граничные и начальные условия. В качестве начального условия задаются значения неизвестной функции s в зависимости от пространственных координат при t = 0. Можно считать, что при t= 0 насыщенность всюду постоянна (например, s = s*).

В случае вытеснения нефти водой естественно задать на входе в пласт (нагнетательная скважина или галерея) расход закачиваемой воды и равенство нулю скорости фильтрации нефти; из последнего условия вытекает, что k2 = 0, следовательно, на этой поверхности s = s*.

На выходе из пласта возможно два варианта граничных условий.

1. Можно пренебречь градиентом капиллярного давления по сравнению с градиентом давления в фазах, т. е. считать, что при x=L, откуда следует, что

при x = L. (5.29

2. Экспериментально установлено, что вода не вытекает из гидрофильного пласта, а накапливается в выходном сечении, пока её насыщенность не достигнет значения s*. В момент достижения значения s*вода прорывается из пласта с сохранением на выходе этого значения насыщенности. Это явление получило название концевого эффекта. Математически оно приводится к сложному нелинейному граничному условию на выходе.

 

Дифференциальное уравнение второго порядка для насыщенности (5.27) можно упростить путем учета только одного вида сил (гравитационных или капиллярных) и получить, соответственно, две различные модели:

Модель Рапопорта - Лиса. Для прямолинейно-параллельного вытеснения уравнение для насыщенности без учета силы тяжести было впервые получено в 1953 г. американскими исследователями Л. Рапопортом и В. Лисом. Поэтому модели двухфазной фильтрации с учетом капиллярных эффектов называют обычно моделями Рапопорта–Лиса.

Дифференциальное уравнение для насыщенности в данной модели – параболического типа.

Модель Баклея - Леверетта. Без учета капиллярных сил двухфазная фильтрация для случая прямолинейно-параллельного вытеснения рассматривалась С. Баклеем и М. Левереттом в 1942 г., а позже независимо от них А. М. Пирвердяном, исследовавшим также случай более общего закона фильтрации при двухфазном течении.

Задачи двухфазной фильтрации без учета капиллярных сил известны как задачи (модель) Баклея – Леверетта. Задачи вытеснения такого типа в одномерной постановке изучены достаточно полно.

Уравнение насыщенности задач данного типа принадлежит к классу квазилинейных гиперболических уравнений первого порядка.

 


Дата добавления: 2015-11-16; просмотров: 70 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Фильтрация водонефтяной смеси и многофазной жидкости| Задача Баклея - Леверетта и ее обобщения

mybiblioteka.su - 2015-2025 год. (0.006 сек.)