Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

З а д а ч а 13

Функция непрерывна в точке , если выполнены условия:

1) функция определена в этой точке и ее окрестности;

2) существует предел функции в точке , т. е. ;

3) предел функции в точке равен значению функции в этой точке.

Если в точке нарушено хотя бы одно из этих условий, то - точка разрыва.

Точка разрыва называется точкой разрыва первого рода, если существуют конечные односторонние пределы функции в этой точке. Если при этом они равны между собой, то называют точкой устранимого разрыва, а если они не равны, то называют точкой неустранимого разрыва или скачком.

Точка разрыва называется точкой разрыва второго рода, если хотя бы один (или оба) из односторонних пределов функции в точке бесконечен или

не существует.

 

Пример 15

Исследовать функцию на непрерывность. В точках разрыва установить характер разрыва. Схематично построить график функции

 

 

Функция задана тремя аналитическими выражениями, представляющими собой элементарные функции, которые непрерывны во всех точках, где они определены.

Функция всюду определена, функция определена на промежутке , функция не определена в точке , которая является точкой разрыва. Точками разрыва могут быть также точки , где происходит смена аналитического выражения функции.

Исследуем на непрерывность функцию в точке .

1. .

2. .

, .

3. .

В точке функция непрерывна.

Исследуем на непрерывность функцию в точке .

1. .

2. , .

 

Так как односторонние пределы в точке не равны между собой, предел функции в точке не существует. Однако односторонние пределы в этой точке существуют и конечны, поэтому - точка неустранимого разрыва I рода.

Определим характер разрыва функции в точке .

 

.

.

 

Так как односторонние пределы функции в точке бесконечны, точка - точка разрыва второго рода.

График функции, имеет следующий вид.

Исследовать функцию на непрерывность. В точках разрыва установить характер разрыва. Схематично построить график функции:

 


Дата добавления: 2015-11-14; просмотров: 30 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
З а д а ч а 10| Ценовая политика

mybiblioteka.su - 2015-2025 год. (0.006 сек.)