Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Характеристика методов корреляционно-регрессионного анализа

Документальное оформление поступления и расхода материальных запасов | Документация, ее сущность и значение, классификация бухгалтерских документов. | Затраты, их классификация. | Классификация затрат и ее использование в управленческом учете | Инвентаризация материально-производственных запасов и отражение ее результатов. | Использование данных управленческого учета для принятия решений. | Принятие решений по управленческой отчетности | Классификация имущества по составу и размещению. Классификация имущества по источникам образования. | Классификация имущества организации по источникам образования | КЛАССИФИКАЦИЯ ИМУЩЕСТВА ОРГАНИЗАЦИИ ПО ИСТОЧНИКАМ ОБРАЗОВАНИЯ И ЦЕЛЕВОМУ ИСПОЛЬЗОВАНИЮ. |


Читайте также:
  1. D) сохранения точных записей, определения установленных методов (способов) и сохранения безопасности на складе
  2. Describing the employee-­ Характеристика служащего
  3. I. ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ
  4. II. 1. Общая характеристика отклоняющегося поведения несовершеннолетних
  5. II. ЛЕ БОН И ЕГО ХАРАКТЕРИСТИКА МАССОВОЙ ДУШИ
  6. II. ПРИЕМЫ ИММОБИЛИЗАЦИИ И ХАРАКТЕРИСТИКА НОСИТЕЛЕЙ
  7. III. ХАРАКТЕРИСТИКА НАПРАВЛЕНИЯ ПОДГОТОВКИ

Статистикой разработано множество методов изучения связей, выбор которых зависит от целей исследования и от поставленных задач. Причинно-следственные отношения – это связь явлений и процессов, когда изменение одного из них – причины – ведет к изменению другого – следствия. Связи между признаками и явлениями, ввиду их большого разнообразия, классифицируются по ряду оснований. Признаки по их значению для изучения взаимосвязи делятся на 2 класса. Признаки, обуславливающие изменения других, связанных с ними признаков, называются факторными или просто факторами. Признаки, изменяющиеся под действием факторных признаков, являются результативными. Связи между явлениями и их признаками классифицируются по степени тесноты связи, направлению и аналитическому выражению.

В реальной общественной жизни ввиду неполноты информации жестко детерминированной системы, может возникнуть неопределенность, из-за которой эта система по своей природе должна рассматриваться как вероятностная, при этом связь между признаками становится стохастической.

Стохастическая связь – это связь между величинами, при которой одна из них, случайная величина у, реагирует на изменение другой величины х или других величин х12 …хn (случайных или неслучайных) изменением закона распределения. Это обуславливается тем, что зависимая переменная (результативный признак), кроме рассматриваемых независимых, подвержена влиянию ряда неучтенных или неконтролируемых (случайных) факторов, а также некоторых неизбежных ошибок измерения переменных. Поскольку значения зависимой переменной подвержены случайному разбросу, они не могут быть предсказаны с достаточной точностью, а только указаны с определенной вероятностью.

Характерной особенностью стохастических связей является то, что они проявляются во всей совокупности, а не в каждой ее единице. Причём неизвестен ни полный перечень факторов, определяющих значение результативного признака, ни точный механизм их функционирования и взаимодействия с результативным признаком. Всегда имеет место влияние случайного. Появляющиеся различные значения зависимой переменной–реализация случайной величины. Модель стохастической связи может быть представлена в общем виде уравнением: ŷi = ƒ(xi) + ei, где:

f(xi) -часть результативного признака, сформировавшаяся под воздействием учтенных известных факторных признаков (одного или множества), находящихся в стохастической связи с признаком;

ŷi -расчетное значение результативного признака;

ei -часть результативного признака, возникшая вследствие действия неконтролируемых или неучтенных факторов, а также измерения признаков, неизбежно сопровождающегося некоторыми случайными ошибками.

Проявление стохастических связей подвержено действию закона больших чисел: лишь в достаточно большом числе единиц индивидуальные особенности сгладятся, случайности взаимопогасятся и зависимость, если она имеет существенную силу, проявится достаточно отчётливо.

По форме проявления взаимосвязей выделяют функциональную (полную) и корреляционную (неполную) связи. Корреляционная связь является частным случаем стохастической связи. В первом случае величине факторного признака строго соответствует одно или несколько значений функции.

Функциональные связи характеризуются полным соот­ветствием между изменением факторного признака и изменением результативной величины и каждому значению признака-фактора соответствуют вполне определенные значения результативного признака. Функциональная зависимость может связывать резуль­тативный признак с одним или несколькими факторными признаками. Функциональную связь можно представить уравнением: yi = f(xi), где:

f(xi) -известная функция связи результативного и факторного признаков;

yi -результативный признак (i = 1, …, n);

xi -факторный признак.

Корреляционная связь (которую также называют неполной, или статистической) проявляется в среднем, для массовых наблюдений, когда заданным значениям зависимой переменной соответствует некоторый ряд вероятных значений независимой переменной. Объяснение тому – сложность взаимосвязей между анализируемыми факторами, на взаимодействие которых влияют неучтенные случайные величины. Поэтому связь между признаками проявляется лишь в среднем, в массе случаев. При корреляционной связи каждому значению аргумента соответствуют случайно распределенные в некотором интервале значения функции.

В корреляционных связях между изменением фактор­ного и результативного признака нет полного соответствия. Одновременное воз­действие на изучаемый признак большого количества самых разнообразных факторов приводит к тому, что одному и тому же значению признака-фактора соответствует целое распределение значений результативного признака, поскольку в каждом конкрет­ном случае прочие факторные признаки могут изменять силу и направленность своего воздействия.

Например, некоторое увеличение аргумента повлечет за собой лишь среднее увеличение или уменьшение (в зависимости от направленности) функции, тогда как конкретные значения у отдельных единиц наблюдения будут отличаться от среднего. Такие зависимости встречаются повсеместно. Например, в сельском хозяйстве это может быть связь между урожайностью и количеством внесенных удобрений, зависимость себестоимости от урожайности сельскохозяйственных культур (продуктивности скота, птицы). Очевидно, что количество внесенных удобрений участвует в формировании урожая. Но для каждого конкретного поля или участка одно и то же количество внесенных удобрений вызовет разный прирост урожайности, так как во взаимодействии находится еще целый ряд факторов (погода, состояние почвы и др.), которые и формируют конечный результат. Однако в среднем такая связь наблюдается: так увеличение массы внесенных удобрений, ведет к росту урожайности, рост урожайности, в свою очередь, ведет к снижению себестоимости.

При сравнении функциональных и корреляционных зависи­мостей следует иметь в виду, что при наличии функциональной зависимости между признаками можно, зная величину факторного признака, точно определить величину результативного признака. При наличии же корреляционной зависимости устанавливается лишь тенденция изменения результативного признака при изме­нении величины факторного признака. В отличие от жесткости функциональной связи, корреляционные связи характеризуются множеством причин и следствий, и устанавливаются лишь их тен­денции.

По направлению связи бывают прямыми, когда зависимая переменная растет с увеличением факторного признака, и обратными, при которых рост последнего сопровождается уменьшением функции. Такие связи также можно назвать соответственно положительными и отрицательными.

 

По силе различаются сильные и слабые связи, либо полное их отсутствие.Эта формальная характеристика выражается конкретными величинами и интерпретируется в соответствии с общепринятыми критериями силы связи для конкретных показателей.

Относительно своей аналитической формы связи бывают линейными и нелинейными. В первом случае между признаками в среднем проявляются линейные соотношения. Нелинейная взаимосвязь выражается нелинейной функцией, а переменные связаны между собой в среднем нелинейно.

Существует еще одна достаточно важная характеристика связей с точки зрения взаимодействующих факторов. Если характеризуется связь двух признаков, то ее принято называть парной. Если изучаются более чем две переменные — множественной (см. Парная и множественная регрессии).

Указанные выше классификационные признаки наиболее часто встречаются в статистическом анализе. Но кроме перечисленных, различают также непосредственные, косвенные и ложные связи. Собственно, суть каждой из них очевидна из названия. В первом случае факторы взаимодействуют между собой непосредственно. Для косвенной связи характерно участие какой-то третьей переменной, которая опосредствует связь между изучаемыми признаками. Ложная связь — это связь, установленная формально и, как правило, подтвержденная только количественными оценками. Она не имеет под собой качественной основы или же бессмысленна вообще.

В наиболее общем виде задача статистики в области изучения взаимосвязей состоит в количественной оценке их наличия и направления, а также характеристике силы и формы влияния одних факторов на другие. Для ее решения применяются две группы методов, одна из которых включает в себя методы корреляционного анализа, а другая— регрессионный анализ. В то же время, ряд исследователей объединяет эти методы вкорреляционно-регрессионный анализ, что имеет под собой некоторые основания: наличие целого ряда общих вычислительных процедур, взаимодополнения при интерпретации результатов.

С помощью корреляционно-регрессионного анализа определяют необходимость включения тех или иных факторов в уравнение множественной регрессии, а также оценивают полученное уравнение регрессии на соответствие выявленным связям, используя коэффициент детерминации.

Поэтому в данном контексте можно говорить о корреляционном анализе в широком смысле, когда всесторонне характеризуется взаимосвязь. В то же время выделяют корреляционный анализ в узком смысле, когда исследуется сила связи и регрессионный анализ, в ходе которого оценивается ее форма и воздействие одних факторов на другие.

Задачи, собственно корреляционного анализа, сводятся к измерению тесноты связи между варьирующими признаками, определению неизвестных причинных связей и оценке факторов, оказывающих наибольшее влияние на результативный признак. Задачи регрессионного анализа лежат в сфере установления формы зависимости, определения функции регрессии, использования уравнения для оценки неизвестных значений зависимой переменной.

Методы оценки тесноты связи подразделяются на корреляционные (параметрические) и непараметрические. Параметрические методы основаны на использовании, как правило, оценок нормального распределения и применяются в случаях, когда изучаемая совокупность состоит из величин, которые подчиняются закону нормального распределения. На практике это положение чаще всего принимается априори. Собственно, параметрические методы принято называть корреляционными. Непараметрические методы не накладывают ограничений на закон распределения изучаемых величин. Их преимуществом является и простота вычислений:


Дата добавления: 2015-11-14; просмотров: 72 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Усовершенствование управленческих решений по управленческой отчетности| Коэффициент ранговой корреляции Спирмена

mybiblioteka.su - 2015-2025 год. (0.007 сек.)