Читайте также: |
|
Task 1. Analysis of stepped rod in tension-compression
The stepped rod (fig. 1) is under the action of longitudinal axial forces F and distributed load q. To carry out the analysis of the rod.
Take the data for computation from table 1 and material mark from table 2. accept the safety factor as following:
- for ductile materials n y = 1,5; for brittle materials n s = 2,5
Order of work
1. Using the method of the section determine the normal axial force N and normal stress s at each section of the rod and draw diagram N and s to scale.
2. Determine the absolute elongation D l of each section and draw the diagram of the cross-section motion along the rod.
3. Calculate allowable values of stress, determine the dangerous section of the rod and make the conclusion about strength of the rod.
Table 1
variant number / group No. / | Loading | Length a, m | Area A, cm 2 | |
F, kN | q, kN/м | |||
0.4 | 3.0 | |||
0.5 | 3.5 | |||
0.6 | 4.0 | |||
0.7 | 4.5 | |||
0.8 | 5.0 | |||
0.9 | 3.5 | |||
0.35 | 4.5 | |||
0.45 | 5.0 | |||
0.55 | 6.0 | |||
0.65 | 5.5 |
Table 2
variant number | ||||||||||
Material | 30ХГСА | 45Х | Ст 3 | 30Г | Д6 | СЧ38-60 | 20Х | 12ХН3А | Д1П | 20Г |
Fig.1. (see also p.5)
Fig.1. Continued (see also p.6)
Fig.1. Ending
Task 2. Determination of geometrical characteristics of plane sections
Determine values of the principal centroidal moments of inertia and position of the principal centroidal axes of compound section (fig. 4).
Take the data necessary for computation from table 4.
Order of work
1. Draw the section to scale and mark the dimensions; h – I-siction height, h 1 - height of channel, b - width, t - thickness of the stripe.
2. Determine the centroid of the section with respect to selected auxiliary axes. Draw centroidal axes.
3. Determine values of moments of inertia: axial moment I x and I y, and product of inertia (centrifugal moment) I xy respecting central axes.
4. Determine the position of principal centroidal axes of inertia u and v and show them on the sectional drawing.
5. Determine values of the principal moments of inertia Iu and Iv.
6. Make necessary checks for Iyc + Izc = Iu + Iv; Iuv = 0.
table 4
variant number /group No./ | I-section number, h | Stripe b ´ t, mm | Channel number, h 1 | Equal angle, mm |
100´6 | 50´50´3 | |||
120´6 | 50´50´4 | |||
140´6 | 50´50´5 | |||
160´6 | 45´45´5 | |||
180´6 | 56´56´4 | |||
200´6 | 56´56´5 | |||
220´6 | 70´70´5 | |||
240´6 | 70´70´6 | |||
180´8 | 56´56´4 | |||
200´8 | 56´56´5 |
Fig.4. (see also p.14)
Fig.4. Continued (see also p.15)
Fig.4. Ending
Дата добавления: 2015-11-14; просмотров: 66 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Основные проблемы, рассматриваемые экзистенциализмом. | | | Task 3. Construction shear force and bending moment diagrams for beams |