Читайте также: |
|
Sarcini pentru problemele de Programare Liniara
Sarcina 1
Metoda grafică de rezolvare a Problemei de Programare Liniară (PPL).
Variante pentru Sarcina 1
Nr var | Problema de programare liniara | Nr var | Problema de programare liniara |
max f (x) = 3X1 + 2X2 X1 + 2X2 ≥ 10 2X1 - X2 ≤ 18 X1 + 3X2 ≤ 13 X1, X2 ≥ 0 | |||
max f (x) = 3X1 + 2X2 X1 + 2X2 ≤ 12 2X1 - X2 ≥ 7 X1 + 3X2 ≥ 14 X1, X2 ≥ 0 | |||
max f (x) = 3X1 + 2X2 X1 + 2X2 ≤ 11 2X1 - X2 ≥ 5 X1 + 3X2 ≥ 14 X1 , X2 ≥ 0 | |||
min f (x) = 3X1 + 2X2 X1 + 2X2 ≥10 2X1 - X2 ≥ 10 X1 + 3X2 ≤ 13 X1, X2 ≥ 0 | |||
max f (x) = 3X1 + 2X2 X1 + 2X2 ≤ 11 2X1 - X2 ≥ 5 X1 + 3X2 ≥ 14 X1 , X2 ≥ 0 | , | ||
max (10х1 + 20х2) х1 + х2 £ 150 2 х1 + 0.5 х2 £ 240 х1 + 3.5 х2 £ 350 х2³ 60, х1 ³ 0 | |||
max f (x) = 3х1+ х2 х1 + х2 £ 5 0.5х1 + х2 ³ 3 х1 - х2 ³ 1 | |||
max f (x) = 3х1+ х2 2х1 + 3х2 ³ 12 -х1 + х2 £ 2 2х1 - х2 £ 2 х1 ³ 0, х2 ³ 0 | |||
min f (x) = 3X1 + 2X2 X1 + 2X2 ≤ 11 2X1 - X2 ≥ 5 X1 + 3X2 ≥ 14 X1, X2 ≥ 0 | L = 5x1 - 2x3 min - 5x1 - x2 + 2x3 ≤ 2 - x 1+x3 + x4 ≤ 5 - 3x1 + 5x4 ≤ 7 | ||
max f (x) = 3х1+ 5х2 х1 + х2 £ 5 3х1 + 2 х2 £ 8 х1 ³ 0, х2 ³ 0 | |||
min f (x) = 3X1 + 2X2 X1 + 2X2 ≥12 2X1 - X2 ≥ 12 X1 + 3X2 ≤ 14 X1, X2 ≥ 0 | |||
max f (x) = 4х1+ 3х2 х1 + 2х2 £ 10 х1 + 2х2 ³ 2 2х1 + х2 £ 10 х1 ³ 0, х2 ³ 0 |
Sarcina 2
Limita şirului numeric. Erorile de calcul.
Variante pentru Sarcina 2
Demonstraţi ca numărul a este limita şirului numeric cu preciziile
· 𝜀=0.01
· 𝜀=0.001
1. | =0 | 24. | |
2. | =11 | 25. | =1/5 |
3. | lim (2n-1)/(2n+1)=1 n®¥ | 26. | lim ()=1/3 n®¥ |
4. | lim (3n2+1)/(5n2-1)=3/5 n®¥ | 27. | lim ()=1/2 n®¥ |
5. | lim (3n-5)/(9n+4)=1/3 n®¥ | 28. | lim ()=1 n®¥ |
6. | lim (n2-2)/(2n2-9)=1/2 n®¥ | 29. | lim ()=1 n®¥ |
7. | lim (3n+1)/ 3n =1 n®¥ | 30. | lim (2n-1)/(2n+1)=1 n®¥ |
8. | lim (1/2n)=0 n®¥ | 31. | lim n!/((n+1)!-n!)=0 n®¥ |
9. | lim (an/n!)=0, pentru a>0 n®¥ | 32. | lim (n2)/(n3+2009)=0 n®¥ |
10. | lim ()=0 n®¥ | 33. | lim (n+1)/n=1 n®¥ |
11. | lim ()=1 n®¥ | 34. | lim ((n+2)!+(n+1)!)/(n+3)!)=0 n®¥ |
12. | 35. | ||
13. | 36. | ||
14. | 37. | ||
15. | 38. | ||
16. | =0 | 39. | =6 |
17. | = | 40. | =3 |
18. | =0 | 41. | = |
19. | =2 | 42. | = |
20. | =e2 | 43. | =20 |
21. | =1 | 44. | =0 |
22. | =0 | 45. | = |
23. | =2 | 46. | = |
Sarcina 3
Calcularea aproximativă a valorii funcţiei utilizînd diferenţiala. Erorile de calcul.
Variante pentru Sarcina 3
1. Calculaţi valoarea aprovimativă a funcţiei de o singură variabilă in punctul x=a
2. Calculaţi valoarea aprovimativă a funcţiei de 2 variabile
In punctul x=a,y=b
3. Evaluaţi erorile
Var | Functia de o singura variabila | Functia de 2 variabile |
y=sin(x), x=310, | z=x2+ , x=1,y=4,01 | |
y=cos(x), x=610, | z= ex + , x=1,y=8,01 | |
y=ex, x=1,05, | z=x2+ , x=1,y=4,01 | |
y=2x4-x3+3, x=1,05 | z= + , x=1,05,y=4,01 | |
y=3x3+x-1, x=1,05 | z=sin(x+y), x=1,05,y=0,01 | |
y=ln(1+e10x), x=0,05 | z=ln(x+y), x=1,05,y=0,01 | |
y=arctg(e3x), x=0,05 | z= , x=1,05,y=4,01 | |
y= , x=0,15 | z= , x=1,05,y=4,01 | |
y=lg(x), x=10,21 | z= (x+y2), x=1,05,y=0,001 | |
y= , x=33 | z= x2+y+ln(x+y), x=1,05,y=0,01 | |
y= lg(10*sin(x)), x=910 | z= x+y2+ln(x2+y), x=0,05,y=1,001 | |
y= x10-3x6+x2+2, x=0,05 | z=x2+2xy+y2, x=0,05,y=0,001 | |
y=24ex-24x3-18x-2, x=0,01 | z=x2y/(x2+y2), x=1,05,y=1,01 | |
y=6sinx+x3, x=0,05 | z=e(x+y)/(xy), x=0,01,y=0,01 | |
y=2cosx+x2, x=0,01 | z=tg(xy2), x=0,05,y=0,01 | |
y=x80-x10+x20, x=0,005 | z=xy/(x+y), x=0,05,y=2,01 | |
y= , x=0,05 | z=xy, x=1,05,y=1,01 | |
y=1/ , x=0,05 | z=x2y3, x=1,05,y=1,01 | |
y=2cos + , x=0,01 | z=xy/ , x=1,05,y=4,01 | |
y= , x=0,01 | z=4x2-3xy, x=1,05,y=4,01 | |
y= ln(1+x), x=0,05 | z=2xy+3x2-y2, x=1,05,y=4,01 | |
y= sinx+ex, x=0,01 | z=exsiny, x=-3.01,y=4,02 | |
y= ex+x3, x=0,001 | z=(1+xy)2, x=0,05,y=2,02 | |
y= /(x2+1), x=0,01 | z=ln(1-xy+y2), x=1.03,y=2,06 | |
y=3x3+x- ln(x), x=1,05 | z=e(x+y), x=1,02,y=3,06 | |
y= , x=0,001 | z=(x2+y2)/(x+y), x=1.01,y=1.01 | |
y=3x3+x- sin(x), x=0,001 | z=x2y/(x+y), x=0,05,y=0,01 | |
y= + sin(x), x=0,01 | z=(x2+y2)ex, x=0,05,y=0,01 | |
y=tg(x)+ ex, x=0,01 | z=(x2+y2)ey, x=0,05,y=0,01 | |
y= x2008-x2009+x2010, x=1,001 | f(x,y,z)=arctg(1,05) + + + . | |
y= , x=0,05 | Stiind ca ,calculati | |
y=1/ , x=0,05 | Stiind ca f(x,y,z)=x2+lnx+ ez,, calculati f(x,y,z)= 1,012+ln(0,07)+e1,03, | |
y=2sin + x3, x=0,03 | f(x,y)= sinx+y2+ln(x2+y), x=0,01,y=1,003 | |
y= , x=0,04 | Stiind ca f(x,y,z)=sin2x+ey+arcsinz, calculati f(x,y,z)= sin2(0,05)+2 e1,01+arcsin(1,03), | |
y= cos(1+x), x=0,05 | f(x,y)= x4y/(x2+tg2y), x=1,05,y=1,02 | |
y= tgx+ex, x=0,02 | f(x,y,z)= e(x+y)/(xy)+ 2sin , x=0,01,y=0,01, z=1,01 | |
y= tg30+sin2280 | f(x,y)= , x=0,02,y=0,04 | |
y= /(x2+1), x=0,01 | f(x,y,z)= xy/(x2+y2)+ , x=0,05,y=2,01,z=1,03 | |
y=3x2+cosx- sin(x), x=0,05 | f(x,y)= , x=1,02,y=1,04 | |
y= , x=0,05 | f(x,y,z)= x2+y3-z5, x=1,02,y=1,03, z=2,04 | |
y=x2- sin2(x), x=0,03 | f(x,y)= cos2x+lny+e(x+y), x=1,05,y=1,01 | |
y= + arcsin(x), x=0,02 | f(x,y)=(x+y2)/ln(x2+y), x=0,05,y=1,001 | |
y=tg(x)+ ex, x=0,01 | f(x,y,z)= sin(x2+2xy+y2)+zxy, x=0,02,y=0,01, z=0,06 | |
y= sin(x)+cos(x)+ex, x=1,001 | f(x,y)= cos(x2y)/(x2+y2), x=1,05,y=1,01 | |
y=arctg(1,05) | f(x,y,z)= e(x+y)/(z+y)+exyz, x=0,01,y=0,01, 1,01 | |
y=1/(e0,05+tg30+sin50+ln1.05) | f(x,y)= tg(xsin2y), x=0,05,y=0,01 |
Sarcina 4
Дата добавления: 2015-11-14; просмотров: 59 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
quot;Комп’ютерні технології вимірювання | | | Variante pentru Sarcina 5 |