Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Эквивалентность процентных ставок

Формула простых процентов | Расчет процентов с использованием процентных чисел | Определение срока ссуды и величины процентной ставки | Формула сложных процентов | Эффективная ставка процентов | Сущность дисконтирования | Банковский учет | Глава 4. Финансовые функции ЕХСЕL как основа практических расчетов в современных условиях | Операции наращения | Операции дисконтирования |


Читайте также:
  1. Банковский процент, функции и факторы, его определяющие, виды процентных ставок.
  2. Быть равным количеству подставок под ложки (фото 3).
  3. Динамика заявляемой и фактической ставок по предоставлению
  4. Задание {{ 65 }} Эквивалентность1
  5. Конец фиксированных процентных ставок
  6. Материальные затраты (потребности, цены и условия поставок сырья, материалов, энергоносителей, текущие цены и т.п.);
  7. Метод винтовых вставок.

 

Достаточно часто в практике возникает ситуация, когда необходимо произвести между собой сравнение по выгодности условий различных финансовых операций и коммерческих сделок. Условия финансово-коммерческих операций могут быть весьма разнообразными и напрямую несопоставимыми. Для сопоставления альтернативных вариантов ставки, используемые в условиях контрактов, приводят к единообразному показателю.

Различные финансовые схемы можно считать эквивалентными в том случае, если они приводят к одному и тому же финансовому результату.

Эквивалентная процентная ставка – это ставка, которая для рассматриваемой финансовой операции даст точно такой же денежный результат (наращенную сумму), что и применяемая в этой операции ставка.

Классическим примером эквивалентности являются номинальная и эффективная ставка процентов:

 

i = (1 + j / m) m - 1.

j = m [(1 + i)1 / m - 1].

 

Эффективная ставка измеряет тот относительный доход, который может быть получен в целом за год, т.е. совершенно безразлично – применять ли ставку j при начислении процентов m раз в год или годовую ставку i, – и та, и другая ставки эквивалентны в финансовом отношении.

Поэтому совершенно не имеет значения, какую из приведенных ставок указывать в финансовых условиях, поскольку использование их дает одну и ту же наращенную сумму. В США в практических расчетах применяют номинальную ставку, а в европейских странах предпочитают эффективную ставку процентов.

Если две номинальные ставки определяют одну и ту же эффективную ставку процентов, то они называются эквивалентными.

 

Пример. Каковы будут эквивалентные номинальные процентные ставки с полугодовым начислением процентов и ежемесячным начислением процентов, если соответствующая им эффективная ставка должна быть равна 25%?

Решение:

Находим номинальную ставку для полугодового начисления процентов:

j = m [(1 + i)1 / m - 1] = 2[(1 + 0,25)1/2 - 1] = 0,23607.

Находим номинальную ставку для ежемесячного начисления процентов:

j = m [(1 + i)1 / m - 1] = 4[(1 + 0,25)1/12 - 1] = 0,22523.

Таким образом, номинальные ставки 23,61% с полугодовым начислением процентов и 22,52% с ежемесячным начислением процентов являются эквивалентными.

 

При выводе равенств, связывающих эквивалентные ставки, приравниваются друг к другу множители наращения, что дает возможность использовать формулы эквивалентности простых и сложных ставок:

простая процентная ставка:

 

i = [(1 + j / m) m • n - 1] / n;

 

сложная процентная ставка:

.

 

Пример. Предполагается поместить капитал на 4 года либо под сложную процентную ставку 20% годовых с полугодовым начислением процентов, либо под простую процентную ставку 26% годовых. Найти оптимальный вариант.

Решение:

Находим для сложной процентной ставки эквивалентную простую ставку:

i = [(1 + j / m) m • n - 1] / n = [(1 + 0,2 / 2)2 • 4 - 1] / 4 = 0,2859.

Таким образом, эквивалентная сложной ставке по первому варианту простая процентная ставка составляет 28,59% годовых, что выше предлагаемой простой ставки в 26% годовых по второму варианту, следовательно, выгоднее разместить капитал по первому варианту, т.е. под 20% годовых с полугодовым начислением процентов.

Находим эквивалентную сложную ставку процентов для простой ставки:

 

Таким образом, процентная ставка 18,64% годовых с полугодовым начислением процентов ниже 20% годовых с полугодовым начислением процентов, то первый вариант выгоднее.


Дата добавления: 2015-11-14; просмотров: 84 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Непрерывное начисление процентов| Изменение финансовых условий

mybiblioteka.su - 2015-2024 год. (0.008 сек.)