Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Паротурбинные установки

Читайте также:
  1. Блок-схема установки.
  2. Величины удельных затрат на тонну произведенной продукции определяются как частное от деления годовых затрат по этой статье на годовую производительность установки.
  3. ГАЗОТУРБИННОЙ УСТАНОВКИ
  4. Казахстан в период двоевластия. Первый всеказахский съезд. Образование партии «Алаш» - ее програмные установки и тактика.
  5. Монтаж буровой установки
  6. Нарисуйте схему идеальной абсорбционной холодильной установки и объясните его работу.
  7. Обладнання бурової установки

Паротурби́нная устано́вка — это непрерывно действующий тепловой агрегат, рабочим телом которого является вода и водяной пар. Паротурбинная установка является механизмом для преобразования потенциальной энергии сжатого и нагретого до высокой температуры пара в кинетическую энергию вращения ротора турбины. Включает в себя паровую турбину и вспомогательное оборудование. Паротурбинные установки используются для привода турбогенератора на тепловых и атомных электростанциях.

На электрической станции механическая энергия превращается в электрическую энергию с помощью электрического генератора.

Принципиальная схема паротурбинной установки для привода электрогенератора изображена на рисунке.

Свежий пар из котельного агрегата (1), где он получил тепло от сгорания топлива, поступает в турбину (2) и, расширяясь в ней, совершает механическую работу, вращая роторэлектрогенератора (3). После выхода из турбины, пар поступает в конденсатор (4), где происходит его конденсация. Конденсат отработавшего в турбине пара при помощи конденсатногонасоса

(5) проходит через подогреватель низкого давления (ПНД) (6) в деаэратор (7). Из деаэратора питательный насос (8) подаёт воду через подогреватель высокого давления (ПВД) (9) в котельный агрегат.

Подогреватели (6) и (9) и деаэратор (7) образуют систему регенеративного подогрева питательной воды, которая использует пар из нерегулируемых отборов паровой турбины.

 

Паровая турбина состоит из одной или нескольких последовательно расположенных ступеней, в которых происходит двойное преобразование энергии: потенциальная и внутренняя энергия пара преобразуются в соплах и лопатках в кинетическую энергию, а кинетическая энергия, а также работа сил, возникающих в процессе ее преобразования в рабочем колесе — в механическую энергию, передаваемую непрерывно вращающемуся валу.
По принципу работы паровые турбины классифицируются на активные (расширение пара происходит только в соплах) и реактивные (расширение пара происходит в соплах и на рабочих лопатках).
По типу паровые турбины принято разделять на: конденсационные турбины (тип К); конденсационные с теплофикационным отбором (Т); конденсационные с регулируемыми отборами на промышленные нужды и теплофикацию (ПТ); с противодавлением (тип Р); с противодавлением и отбором (ПР); конденсационные с отбором пара на промышленные нужды (П).


Принципиальная схема паротурбинной энергетической установки (ПТУ) приведена на Рисунке.

 

Принципиальная схема паротурбинной энергетической установки

Свежий пар из котла 1 и пароперегревателя 2 поступает в турбину 3 и, расширяясь в ней, совершает работу, вращая ротор электрического генератора 5. После выходи из турбины пар поступает в конденсатор 4, где конденсируется. Далее конденсат отработавшего пара конденсатным насосом 6 прокачивается через подогреватель низкого давления 7 в деаэратор 8. Из деаэратора 8 питательным насосом 9 вода подается через подогреватель высокого давления 10 в котел 1.
Паровая турбина и электрогенератор представляют собой турбоагрегат. Подогреватели 7, 10 и деаэратор 8 образуют систему регенеративного подогрева питательной воды с использованием пара из нерегулируемых отборов паровой турбины.
Для эффективной работы пар в турбину должен подаваться с высоким давлением и температурой (от 13 кг/см2/190 oC до 240 кг/см2/550оС). Такие условия предъявляют повышенные требования к котельному оборудованию, что приводит к существенному росту капитальных вложений.
Преимуществом паротурбинной технологии является возможность использования в котле самого широкого спектра топлив, включая твердые. Однако использование тяжелых нефтяных фракций и твердого топлива снижает экологические показатели системы, которые определяются составом отходящих из котла продуктов горения.
На существующих тепловых электростанциях новые ПТУ целесообразно использовать при отсутствии возможности внедрения на них газотурбинных и парогазовых технологий.
Паровые турбины с противодавлением целесообразно использовать для модернизации котельных с промышленными паровыми котлами распространенных типов ДКВР, ДЕ (рабочее давление 1,3-1,4 МПа), у которых давление пара на выходе из котлов значительно выше, чем это необходимо для производственных нужд.
При установке в таких котельных паровых противодавленческих турбоагрегатов малой мощности, пропускаемый через ПТУ пар будет срабатываться от начальных параметров на котлах до давления, нужного потребителю, и в результате бесполезно теряемый до этого потенциал пара будет использоваться для выработки малозатратной электрической энергии.
Вырабатываемая ПТУ электроэнергия пойдет на покрытие собственных нужд котельной и предприятия, а ее избыток может продаваться в энергосистему. При этом основной задачей модернизированной котельной продолжает оставаться производство тепла, а электроэнергия является полезным сопутствующим продуктом его производства, значительно улучшающим технико-экономические показатели работы котельной, и может стать дополнительной статьей доходов.
КПД ПТУ в части генерации электроэнергии самый низкий из всех рассматриваемых технологий и составляет от 7 до 39%, но в составе теплофикационных систем суммарная эффективность паротурбинной установки может достигать 84% в расчете на условную единицу израсходованного топлива.


Изменение электрического КПД конденсационных паротурбинных установок приведено на Рисунке


Изменение электрического КПД при изменении единичной мощности конденсационных паротурбинных установок

Сложность комплексной оценки информации по паротурбинным установкам заключается в их большом разнообразии как по типу (К, П, ПТ, Т, Р, ПР), так и по начальным параметрам (от 13 кг/см2 и ниже до 240 кг/см2). В теплофикационных ПТУ электрическая мощность, расход пара на турбину определяется величиной тепловой нагрузки в паре и в сетевой воде. Технико-экономические показатели каждой турбины должны определяться по диаграммам режимов с учетом всех особенностей ее работы.

 


Дата добавления: 2015-11-13; просмотров: 231 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Translate into English.| Перевела Cler_S

mybiblioteka.su - 2015-2024 год. (0.007 сек.)