Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Нахождение кратчайших путей от заданной вершины до всех остальных вершин алгоритмом Дейкстры

Оценка алгоритма сортировки | Алгоритмы неустойчивой сортировки | Множественное наследование | Метод Insert класса AVLTree | Итераторы вывода | Виды исключительных ситуаций |


Читайте также:
  1. Бутылочное горлышко» на вершине
  2. Ведомость вычисления координат вершин теодолитного хода.
  3. ВЕРШИНЫ МИКРО-М И ВПАДИНЫ МИКРО-W (MICRO-M TOPS AND MICRO-W BOTTOMS)
  4. Вопрос 21. Графы. Алгоритм поиска достижимых вершин графа.
  5. Вот вам подарочек, а остальных в геенну огненную и на хуй, на хуй, на хуй
  6. Выбор воздухораспределителей для остальных помещений.
  7. Выбор путей покрытия потребности в персонале

Постановка задачи

Дан ориентированный или неориентированный взвешенный граф с вершинами и рёбрами. Веса всех рёбер неотрицательны. Указана некоторая стартовая вершина . Требуется найти длины кратчайших путей из вершины во все остальные вершины, а также предоставить способ вывода самих кратчайших путей.

Эта задача называется "задачей о кратчайших путях с единственным источником" (single-source shortest paths problem).

Алгоритм

Здесь описывается алгоритм, который предложил датский исследователь Дейкстра (Dijkstra) в 1959 г.

Заведём массив , в котором для каждой вершины будем хранить текущую длину кратчайшего пути из в . Изначально , а для всех остальных вершин эта длина равна бесконечности (при реализации на компьютере обычно в качестве бесконечности выбирают просто достаточно большое число, заведомо большее возможной длины пути):

Кроме того, для каждой вершины будем хранить, помечена она ещё или нет, т.е. заведём булевский массив . Изначально все вершины не помечены, т.е.

Сам алгоритм Дейкстры состоит из итераций. На очередной итерации выбирается вершина с наименьшей величиной среди ещё не помеченных, т.е.:

(Понятно, что на первой итерации выбрана будет стартовая вершина .)

Выбранная таким образом вершина отмечается помеченной. Далее, на текущей итерации, из вершины производятся релаксации: просматриваются все рёбра , исходящие из вершины , и для каждой такой вершины алгоритм пытается улучшить значение . Пусть длина текущего ребра равна , тогда в виде кода релаксация выглядит как:

На этом текущая итерация заканчивается, алгоритм переходит к следующей итерации (снова выбирается вершина с наименьшей величиной , из неё производятся релаксации, и т.д.). При этом в конце концов, после итераций, все вершины графа станут помеченными, и алгоритм свою работу завершает. Утверждается, что найденные значения и есть искомые длины кратчайших путей из в .

Стоит заметить, что, если не все вершины графа достижимы из вершины , то значения для них так и останутся бесконечными. Понятно, что несколько последних итераций алгоритма будут как раз выбирать эти вершины, но никакой полезной работы производить эти итерации не будут (поскольку бесконечное расстояние не сможет прорелаксировать другие, даже тоже бесконечные расстояния). Поэтому алгоритм можно сразу останавливать, как только в качестве выбранной вершины берётся вершина с бесконечным расстоянием.

Восстановление путей. Разумеется, обычно нужно знать не только длины кратчайших путей, но и получить сами пути. Покажем, как сохранить информацию, достаточную для последующего восстановления кратчайшего пути из до любой вершины. Для этого достаточно так называемого массива предков: массива , в котором для каждой вершины хранится номер вершины , являющейся предпоследней в кратчайшем пути до вершины . Здесь используется тот факт, что если мы возьмём кратчайший путь до какой-то вершины , а затем удалим из этого пути последнюю вершину, то получится путь, оканчивающийся некоторой вершиной , и этот путь будет кратчайшим для вершины . Итак, если мы будем обладать этим массивом предков, то кратчайший путь можно будет восстановить по нему, просто каждый раз беря предка от текущей вершины, пока мы не придём в стартовую вершину — так мы получим искомый кратчайший путь, но записанный в обратном порядке. Итак, кратчайший путь до вершины равен:

Осталось понять, как строить этот массив предков. Однако это делается очень просто: при каждой успешной релаксации, т.е. когда из выбранной вершины происходит улучшение расстояния до некоторой вершины , мы записываем, что предком вершины является вершина :


Дата добавления: 2015-11-16; просмотров: 74 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Перегрузка операции присваивания копированием| Доказательство

mybiblioteka.su - 2015-2024 год. (0.006 сек.)