Читайте также:
|
|
Теорема шаблонов (The Schema Theorem), приведённая Холландом, показывает, как изменяется доля представителей шаблона в популяции, являясь первой попыткой объяснить правильность работы генетических алгоритмов. Следует заметить, что она верна только для классического ГА с его пропорциональным отбором и одноточечным кроссовером.
M (H, t) — число представителей шаблона H в поколении t.
Количество представителей шаблона H в промежуточном поколении:
где f(H, t) — приспособленность шаблона H в поколении t, а <f(t)> — средняя приспособленность поколения t.
Особи промежуточной популяции с вероятностью pc подвергаются кроссоверу. Одноточечный кроссовер может разрушить шаблон – ни один из детей не является представителем рассматриваемого шаблона. Вероятность разрушения меньше, чем
где P(H, t) — доля представителей шаблона H в поколении t. Первый множитель произведения равен вероятности попадания точки раздела между фиксированными битами шаблона, а второй — вероятности выбрать в пару представителя другого шаблона.
Но даже в случае, когда второй родитель не является представителем данного шаблона, и точка раздела попадает между фиксированными битами, шаблон не обязательно разрушается. Например, рассматриваем шаблон 11***, кроссоверу подвергаются строки 11011 и 10100, точка раздела попадает между первыми двумя битами
1.1011 -> 1. 1011 1.0100 1. 0100 Как видно, в этой ситуации шаблон не разрушается.Переходя от количества представителей к их доле, получаем следующее неравенство:
Учтём влияние мутации. В шаблоне o(H) фиксированных битов, и каждый не будет инвертирован с вероятностью (1 − pm). Откуда получаем итоговую формулу теоремы шаблонов:
· Полученное выражение не слишком удачно для анализа работы генетического алгоритма, т.к. в нём присутствует знак неравенства.
· Мы не учитывали случаи, когда рассматриваемый шаблон получается в результате кроссовера пары строк, не являющихся его представителями.
· Приспособленность шаблона и средняя приспособленность популяции быстро изменяются от поколения к поколению, поэтому полученное неравенство хорошо описывает ситуацию только для следующего поколения.
На данный момент существуют более точные версии этой теоремы и другие рассуждения, доказывающие целесообразность использования генетических алгоритмов.
Настройка ГА
Генетический алгоритм производит поиск решений с помощью:
· отбора гиперплоскостей (hyperplane sampling), осуществляемого кроссовером, поскольку последний комбинирует и совмещает шаблоны родителей в их детях.
· метода hill-climbing, обеспечивающегося мутацией: особь случайным образом изменяется – неудачные варианты вымирают, полезные изменения сохраняются популяцией.
Исследования показали, что на простых задачах с малым размером популяции ГА с мутацией (и без кроссовера) находят решение быстрее. На сложных многоэкстремальных функциях лучше использовать ГА с кроссовером, поскольку этот метод более надежен, хотя и требует большего размера популяции.
С точки зрения теоремы шаблонов, мутация только вредит росту количества представителей хороших шаблонов, поскольку лишний раз их разрушает. Однако мутация просто необходима для ГА с малым размером популяции, потому что для них свойственна преждевременная сходимость (premature convergence) – ситуация, когда в некоторых позициях все особи имеют один и тот же бит, не соответствующий глобальному экстремуму.
Введём понятие, использующееся для анализа ГА. Д авление отбора (selection pressure) — это мера того, насколько различаются шансы лучшей и худшей особей популяции попасть в промежуточную популяцию. Для пропорционального отбора эта величина с увеличением средней приспособленности популяции уменьшается, стремясь к 1, т.е. шансы плохой и хорошей особей создать потомство уравниваются.
При увеличении вероятностей скрещивания или мутации и при уменьшении давления отбора (например, за счет использования других стратегий отбора) размножение представителей приспособленных шаблонов замедляется, но зато происходит интенсивный поиск других шаблонов. Обратно, уменьшение вероятностей скрещивания или мутации и увеличение давления отбора ведет к интенсивному использованию найденных хороших шаблонов, но меньше внимания уделяется поиску новых.
Вывод: для эффективной работы генетического алгоритма необходимо поддерживать тонкое равновесие между исследованием и использованием.
Необходимость сбалансированной сходимости ГА:
§ быстрая сходимость может привести к схождению к неоптимальному решению
§ медленная сходимость часто приводит к потере найденной наилучшей особи.
Методология управления сходимостью классического ГА до сих пор не выработана.
Дата добавления: 2015-11-16; просмотров: 47 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Критерии останова | | | Различные модификации ГА |