Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

отделением и короткозамыкателем. 2 страница



Читайте также:
  1. 1 страница
  2. 1 страница
  3. 1 страница
  4. 1 страница
  5. 1 страница
  6. 1 страница
  7. 1 страница

На переменном токе номинальные токи в установках ограничиваются за счет перехода на более высокое напряжение - на 220, 380 и 660 Вив настоящее время на 1140 В. Рост мощностей установок ставит задачу создания быстродействующих выключателей и на переменном токе.

Привод. Привод служит для включения выключателя по чьей-либо команде (оператора, системы автоматического управления и др.). Выполняются выключатели с ручным или двигательным приводом либо с тем и другим. Под двигательным понимают привод, в котором сила создается любым видом энергии, кроме мускульной энергии оператора, например электромагнитом, электродвигателем, пневматикой, гидравликой и т. п. Отключение выключателя осуществляется пружинами после разъединения расцепляющего устройства.

 

Рис. 4-3. Пример исполнения расцепляющего устройства автоматического выключателя

Расцепляющее устройство. Это устройство предназначено:

для исключения возможности удерживать контакты выключателя во включенном положении (рукояткой, дистанционным приводом) при наличии ненормального режима работы в защищаемой цепи;

для обеспечения моментного отключения, т. е. не зависящей от оператора, рода и массы привода скорости расхождения контактов.

Расцепляющее устройство представляет собой систему шарнирно-связанных рычагов, соединяющих привод включения с системой подвижных контактов, которые соединены с отключающей пружиной. Принцип работы устройства может быть пояснен схемой на рис. 4-3.

Схема на рис. 4-3, а соответствует положению «Отключено вручную» и «Выключатель взведен». «Взведен» означает, что контакты 7 и 8 разомкнуты, а фигурный рычаг 9 поставлен под зацепление 4 отключающего валика 5; это осуществляется поворотом рукоятки 1 вправо. При повороте рукоятки влево отключающая пружина 2 переведет «ломающиеся» рычаги 3 и б через мертвое положение до упора шарнира О в рычаг 9 и замкнет контакты. Положение «включено» показано на рис. 4-3,6.

В случае возникновения ненормальных условий работы в защищаемой цепи соответствующий расцепитель повернет отключающий валик и выведет его из зацепления с фигурным рычагом. Под действием отключающей пружины фигурный рычаг повернется и другим своим концом переведет «ломающиеся» рычаги вправо через мертвое положение. Отключающая пружина «изломит» рычаги и разомкнет контакты. Выключатель окажется в положении «Отключено автоматически» (рис. 4-3, в). Для повторного включения необходимо отвести рукоятку вправо и ввести в зацепление фигурный рычаг с отключающим валиком.

Конструкции расцепляющих устройств весьма разнообразны, однако действие их подобно описанному. В дальнейшем расцепляющее устройство будем изображать схематично в виде двух сцепленных рычагов.

 

 

Рис. 4-4. Времятоковая характеристика выключателя серии ВА51

 

Следует отметить одно весьма важное обстоятельство. Отключающие и контактные пружины в автоматических выключателях развивают силы в десятки и сотни ньютонов. Система рычагов расцепляющего устройства строится так, что для расцепления требуются незначительные усилия. Это позволяет иметь легкие и высокочувствительные расцепители.

Расцепители. Это элементы, которые контролируют заданный параметр защищаемой цепи и, воздействуя на механизм расцепления, отключают выключатель при отклонении значения параметра от установленного. Они представляют собой реле или элементы реле, встроенные в выключатель с использованием его элементов или приспособленные к его конструкции. Расцепители выполняются на базе электромеханических реле. В настоящее время все большее применение находят расцепители на принципах или на базе статических реле и их элементов. При этом контролирующие и сравнивающие органы расцепителя выполняются на полупроводниковых элементах с выходом на независимый электромагнитный элемент (исполнительный орган), воздействующий на механизм расцепления.

Автоматические выключатели, как правило, снабжаются расцепителем максимального тока для защиты в зоне токов перегрузки и токов короткого замыкания или только токов короткого замыкания. Электромеханические расцепители выполняются электромагнитными, электротепловыми или комбинированными. Расцепитель максимального тока на базе статических реле состоит из блока полупроводникового (БПР), измерительных элементов, встраиваемых в каждый полюс выключателя, и выходного электромагнитного элемента. Измерительными элементами служат на переменном токе трансформаторы тока, на постоянном токе — шунты или трансформаторы постоянного тока. Независимо от принципа устройства расцепители могут выполняться без выдержки времени при срабатывании, с независимой от тока выдержкой времени, с обратнозависимой от тока выдержкой времени. Типичная времятоковая характеристика современного выключателя приведена на рис. 4-4. Полупроводниковый расцепитель, более сложный по устройству, позволяет получить более благоприятные времятоковые характеристики. Пример схемы и устройства такого расцепителя рассмотрен ниже, в разделе 4.

Выключатели могут дополнительно снабжаться расцепителями:

независимым — для дистанционного отключения выключателя при подаче на расцепитель соответствующего напряжения;

минимального или нулевого напряжения — для автоматического отключения выключателя при снижении ниже определенного уровня или исчезновении напряжения.

Могут быть и другого вида расцепители.

Схема выключателя с расцепителем максимального тока мгновенного действия показана на рис. 4-5, а. Токоведущую шину 1 полюса выключателя охватывает магнитопровод, состоящий из сердечника 2 и якоря 3. Когда ток станет выше определенного значения, тяговое усилие превысит усилие пружины 5, якорь притянется и повернет отключающий валик 4. Расцепляющее устройство освободится. Выключатель отключится. Регулирование тока срабатывания осуществляется натягом пружины 5.

 

 

Рис. 4-5. Примеры схем некоторых электромеханических расципителей.

 

Расцепитель минимального напряжения (рис. 4-5,б) состоит из электромагнита — сердечника 2, якоря 4 и катушки 3, подключенной на контролируемое напряжение. При нормальных режимах якорь притянут. При снижении контролируемого напряжения ниже определенного значения (уставки) якорь под действием регулировочной (она же и отключающая) пружины 5 отпадет и, воздействуя на расцепляющее устройство через защелку б, отключит выключатель. Магнитная система рас-цепителя выполняется так, что МДС катушки при номинальном напряжении недостаточна для притяжения якоря, но достаточна для его удержания. Якорь при­тягивается при подготовке выключателя к включению при помощи рычагов 1, связанных с валом выключателя.

Расцепитель напряжения независимый (рис. 4-5, в) представляет собой электромагнит, который притягивает свой якорь при включении катушки на соответствующее напряжение. Своим концом якорь воздействует на расцепляющее устройство и отключает выключатель.

Пример исполнения комбинированного (электротеплового и электромагнитного) расцепителя приведен на рис. 4-6. При перегрузках срабатывает электротепловой расцепитель: биметаллическая пластинка 2 вследствие нагрева изгибается и винтом 3 поворачивает отключающий валик 4. При коротком замыкании срабатывает электромагнитный расцепитель, состоящий из сердечника 7 и якоря 5, охватывающих токопровод 6. Электромагнитный расцепитель воздействует на тот же отключающий валик. Для ограничения тока через биметаллическую пластинку служит шунт 1.

 


Рис. 4-6. Схема комбинированного (электротеплового и электромагнитного) расцепителя.

 

4-2. ВЫКЛЮЧАТЕЛИ ГАШЕНИЯ МАГНИТНОГО ПОЛЯ

 

При неисправностях (пробой изоляции, внутреннее замыкание и т. п.) в обмотках электрических машин необходимо как можно быстрее погасить магнитное поле возбуждения машины. Чем быстрее исчезнет магнитное поле, тем меньшими будут повреждения. Эту задачу осуществляют выключатели гашения магнитного поля, отключая обмотку возбуждения от источника питания. Однако непосредственное ее отключение недопустимо. Вследствие большой индуктивности обмотки при обрыве тока на ее зажимах возникает чрезвычайно большое напряжение, способное вызвать нарушение (пробой) изоляции самой обмотки.

 

Рис. 4-7. Процессы гашения поля и схемы выключателей.

Широкое распространение получил способ гашения поля путем разряда обмотки возбуждения на постоянный или переменный резистор. Применяемые в этом случае выключатели (рис. 4-7, а) имеют две пары контактов - замыкающие 3 и размыкающие 4. Контакты коммутируют с перекрытием. При включении замыкающими контактами подключаются к источнику питания (возбудителю 2) обмотка возбуждения 1 и разрядный резистор Rp, а размыкающими контактами через очень небольшое время (сотые доли секунды) отключается цепь разрядного резистора. Питание получает только обмотка возбуждения L. При отключении (аварийном или оперативном) работа контактов осуществляется в обратном порядке. Сперва подключается к обмотке возбуждения разрядный резистор, а затем обмотка возбуждения, шунтированная разрядным резистором, отключается от источника питания. Происходит разряд обмотки возбуждения на подключенный к ней резистор. Процесс гашения поля (тока) при постоянном значении сопротивления резистора показан кривыми 11 и U1 на рис. 4 -7.

При рассмотренном способе время гашения поля оказывается относительно большим. Сокращение длительности гашения может быть достигнуто за счет увеличения сопротивления разрядного резистора. Однако здесь быстро достигается предел. Максимальное напряжение Umах на обмотке возбуждения в первый момент равно IoRp, где Iо -ток в обмотке возбуждения в момент начала гашения, а Rр - сопротивление резистора. Необходимо, чтобы это напряжение не превосходило допустимого по условиям прочности изоляции значения Uиз, откуда сопротивление разрядного резистора не может превосходить величины

следовательно, время гашения поля не может быть уменьшено ниже определенного значения.

Применение способа гашения поля с помощью резисторов с нелинейным сопротивлением, а также других способов (относительно сложных) не дает оптимального решения.

Оптимальным является такой процесс гашения поля, при котором ток в обмотке возбуждения падает прямолинейно от Iо до нуля, а напряжение на обмотке поддерживается постоянным в течение всего времени гашения поля. Осуществить такой процесс удалось, использовав электрическую дугу в качестве нелинейного сопротивления [б]. Здесь ток и йапряжение при гашении поля изменяются по прямым I2 и U2 (рис. 4-7), время гашения равно 0,17T вместо 0,77Т при гашении на разрядный резистор.

Предложенный способ гашения поля [6] основан на том, что падение напряжения на короткой дуге (длина 2—3 мм) между двумя металлическими пластинами остается практически постоянным при изменении тока в широких пределах. Так, при токе свыше 50 А напряжение на каждой короткой дуге при медных пластинах составляет 28-32 В.

На рис. 4 -7,б приведена схема выключателя, в котором разрядный резистор заменен дугогасительной решеткой 5, подключенной параллельно контактам 4. Во включенном положении выключателя, как и ранее, контакты 3 замкнуты, а контакты 4 разомкнуты. При отключении контакты 4 замыкаются, контакты 3 размыкаются (как и ранее), а затем контакты 4 вновь размыкаются. Возникающая на них электрическая дуга загоняется магнитным полем в дугогасительную решетку, где она горит во время всего процесса гашения поля. Напряжение на решетке остается постоянным и равно

где Uд — напряжение на короткой дуге между двумя пластинами решетки;

п — число последовательно включенных дуг.

Резистор 6 пришлось ввести для исключения короткого замыкания на время, когда одновременно замкнуты контакты 3 и 4 в ходе отключения выключателя. Сопротивление ограничивающего резистора б много меньше сопротивления разрядного резистора, однако при этом наличие резистора б несколько снижает эффективность рассмотренного способа гашения поля.

При одновременном погасании дуги во всех промежутках дугогасительной решетки в момент, когда ток стремится к нулю (погасание дуги на одном промежутке ведет к погасанию всей дуги), на решетке возникает высокое напряжение, могущее привести к пробою изоляции обмотки. Для исключения этого явления параллельно решетке включен резистор 7 с относительно большим сопротивлением. Резистор разбит на части, каждая из которых имеет разное сопротивление и шунтирует определенную группу (секцию) пластин решетки. Одна группа пластин не шунтирована. Такая схема обеспечивает разновременное погасание дуги в секциях (в нешунтированной — в последнюю очередь), что позволяет ограничить перенапряжения допустимым значением.

Выключатель по схеме рис. 4-7,б имел сложную кинематику и требовал до­полнительного ограничивающего резистора б, который, как указывалось, несколько снижал эффективность гашения. Та же идея осуществлена в выключателе гашения поля (рис. 4-7,б) с обычной для автоматических выключателей кинематикой. Выключатель имеет основные 3 и дугогасительные 8 контакты, шунтированные дугогасительной решеткой. Первыми размыкаются основные контакты, а затем дугогасительные, на которых возникает электрическая дуга. Внешним магнитным полем дуга загоняется в решетку 5, где она и гаснет. Гашение поля идет по прямым I2 и U2, Резистор 7 служит для той же цели, что и в выключателе по схеме на рис. 4--7,б. Резистор 6 отсутствует.

 

Рис. 4-8. Общий вид выключателя серии АГП.

 

В этом выключателе дугогасительная решетка при гашении поля включена последовательно с обмоткой возбуждения в отличие от предыдущего, где она была включена параллельно. При параллельном включении решетки напряжение на обмотке

(4.1)

и число пластин решетки

(4.2)

где RВ — сопротивление обмотки возбуждения.

При последовательном включении решетки соответственно

(4.3)

(4.4)

где UВ напряжение на возбудителе (источнике питания). Следовательно, при одинаковых напряжениях на обмотке возбуждения в процессе гашения поля генератора последовательное включение требует большего числа пластин дугогасительной решетки, чем параллельное. Это, однако, с лихвой окупается повышением эффективности гашения, отсутствием резистора 6 и более простой, а следовательно, и надежной кинематикой выключателя.

Общий вид одного из выключателей серии АГП, выполненного с последовательным включением дугогасительной решетки, приведен на рис. 4-8. Токопровод 15 и основные контакты — неподвижные 2 и подвижные 1 — расположены открыто, дугогасительные контакты 9, 10 размещены в камере дугогашения. Возникающая при отключении дуга под действием поперечного магнитного поля, создаваемого последовательной катушкой 5, быстро перемещается по рогам 8 и проникает в дуго-гасительную решетку 7.

Решетка состоит из ряда медных пластин, изолированных друг от друга кольцами из фибры 14. Пластины насажены на стальной изолированный стержень 6. Снаружи решетка охвачена изолированным стальным кожухом 4. С боков решетки размещены катушки 5. Катушки включаются самой дугой в момент вхождения ее в решетку. Они намотаны так, что их магнитные поля направлены навстречу друг другу. В результате между стержнем и кожухом возникает радиальное магнитное поле. Дуга, попав в такое поле, приходит во вращательное движение вокруг оси решетки. Она движется с большой скоростью и не плавит пластин решетки. Вся энергия, выделяющаяся в дуге, распределяется по поверхности пластин и поглощается ими.

При отключении цепи постоянного тока вся энергия, запасенная в отключаемой цепи, выделяется в дуге. Размеры пластин (объем металла) приняты такими, что решетка поглощает всю энергию, выделяющуюся при гашении поля, не перегреваясь свыше 200 °С. При этом выключатель допускает при номинальном токе пять гашении поля подряд. Шунтирующий резистор размещен вне дугогасительной камеры.

Электромагнит 11 с электромагнитной защелкой 12 служит только для включения. Во включенном положении выключатель удерживается защелкой. При освобождении защелки выключатель отключается. Выключатель снабжается соответствующим числом вспомогательных контактов 13 для цепей управления и сиг­нализации. Монтируется выключатель на стальной плите 3.

Выключатели серии АГП выполняются на номинальные токи 1200, 1600, 3200, 4000 и 6000 А.

 

 

ГЛАВА 5

Предохранители плавкие

 

5-1. НАЗНАЧЕНИЕ И ПРИНЦИП РАБОТЫ

 

Предохранитель — коммутационный электрический аппарат, предназначенный для отключения защищаемой цепи посредством разрушения специально предусмотренных для этого токоведущих частей под действием тока, превышающего определенное значение.

В большей части конструкций отключение цепи осуществляется путем расплавления плавкой вставки, которая нагревается непосредственно током защищаемой цепи. После отключения цепи необходимо заменить перегоревшую вставку на исправную.) Эта операция производится вручную либо автоматически. В последнем случае заменяется весь предохранитель.


Рис. 5-1. Времятоковая характеристика предохранителей серии ПН-2

Предохранители появились одновременно с электрическими сетями. Простота устройства и обслуживания, малые размеры, высокая отключающая способность, небольшая стоимость обеспечили очень широкое их применение. Предохранители низкого напряжения изготовляются на токи от миллиампер до тысяч ампер и на напряжение до 660 В, а предохранители высокого напряжения — до 35 кВ и выше.

Широкое применение предохранителей в самых различных областях народного хозяйства и в быту привело к многообразию их конструкций. Однако несмотря на это, все они имеют следующие основные [элементы: корпус или несущую деталь, плавкую вставку, контактное присоединительное устройство, дугогасительное устройство или дугогасительную среду.

Важнейшей характеристикой предохранителя является зависимость времени перегорания плавкой вставки от тока времятоковая характеристика (рис. 5-1).

Предохранитель работает в двух резко отличных режимах: в нормальных условиях ив условиях перегрузок и коротких замыканий. В первом случае нагрев вставки имеет характер установившегося процесса, при котором вся выделяемая в ней теплота отдается в окружающую среду. При этом кроме вставки нагреваются до установившейся температуры и все другие детали предохранителя. Эта температура не должна превышать допустимых значений. Ток, на который рассчитана плавкая вставка для длительной работы, называют номинальным током плавкой вставки 1ном.. Он может быть отличным от номинального тока самого предохранителя.

Обычно в один и тот же предохранитель можно вставлять плавкие вставки на различные номинальные токи. Номинальный ток предохранителя, указанный на нем, равен наибольшему из номинальных токов плавких вставок, предназначенных для данной конструкции предохранителя.

Защитные свойства предохранителя при перегрузках нормируются. Для предохранителей обычного быстродействия задаются условный ток неплавления - ток, при протекании которого в течение определенного времени плавкая вставка не должна перегореть, и условный ток плавления — ток, при протекании которого в течение скрепленного времени плавкая вставка должна перегореть. Например, для предохранителя с плавкими вставками на номинальные токи 63—100 А плавкие вставки не должны перегореть при протекании тока 1,3 Iном в течение одного часа, а при токе 1,6Iном должны перегореть за время до одного часа.

При токах, превышающих условный ток плавления, предохранитель должен сработать в соответствии с времятоковой характеристикой. С ростом тока степень ускорения перегорания плавкой вставки должна возрастать намного быстрее тока Для получения такой характеристики придают вставке специальную форму или используют металлургический эффект.

Вставку выполняют в виде пластинки с вырезами (рис. 5-2, а), уменьшающими ее сечение на отдельных участках. На этих суженных участках выделяется больше теплоты, чем на широких. При номинальном токе избыточная теплота вследствие теплопроводности материала вставки успевает распространиться к более широким частям, и вся вставка имеет практически одну температуру. При перегрузках (I≈Imax) нагрев суженных участков идет быстрее; так как только часть теплоты успевает отводиться к широким участкам. Плавкая вставка плавится в одном самом горячем месте (рис. 5-2,б). При коротком замыкании (I>>I) нагрев суженных участков идет настолько интенсивно, что практически отводом теплоты от них можно пренебречь. Плавкая вставка перегорает одновременно во всех или в нескольких суженных местах (рис. 5-2, в).

 

 

Рис. 5-2. Распределение температур (а) и места перегорания фигурных плавких вставок при перегрузках (б) и при коротких замыканиях (в).

 

Во многих конструкциях плавкой вставке 1 придается такая форма (рис 5-3 а) при которой электродинамические силы F, возникающие при токах короткого замыкания, разрывают вставку еще до того, как она успевает расплавиться На рисунке место разрыва обозначено кружком. Этот участок выполняется меньшего сечения. При токах перегрузки электродинамические силы малы и плавкая вставка плавится в суженном месте. В конструкции, показанной на рис. 5-3,б ускорение отключения цепи при перегрузках и коротких замыканиях достигается за счет пружины 2, разрывающей вставку; при размягчении-металле на суженных участках до того, как происходит плавление этих участков.

Металлургический эффект заключается в том, что многие легкоплавкие металлы (олово, свинец и др.) способны в расплавленном состоянии растворять некоторые тугоплавкие металлы (медь, серебро и др.). Полученный таким образом раствор обладает иными характеристиками, чем исходные материалы (например большим электрическим сопротивлением и пониженной температурой плавления) Указанное явление используется в предохранителях с вставками из ряда параллельных проволок.

 

 

Рис. 5-3. Примеры форм плавких вставок с ускоренным их разрывом.

 

Для ускорения плавления вставки при перегрузках и снижения общей температуры всей вставки при ее плавлении на проволоки напаиваются небольшие оловянные щарики. При токах перегрузки, когда температура вставки достигает температуры плавления олова, шарик, расплавляется и растворяет, часть металла, на котором он напаян. Происходит местное увеличение сопротивления вставки и снижение температуры плавления-металла, в этом месте. Вставка перегорает в том месте, где был наплавлен шарик. При этом температура всей вставки оказывается намного ниже температуры плавления металла, из которого она выполнена. В номинальном режиме шарик практически не влияет на температуру нагрева вставки.

Этот способ получения требуемой времятоковой характеристики может применяться при тонких вставках, например при диаметре шарика 1 мм для проволок диаметром 0,3 мм и диаметре шарика до 2 мм при более толстых проволоках. При возрастании диаметра вставки влияние металлургического эффекта резко снижается и практически не сказывается.

Рассмотренные способы ускорения перегорания вставки при токах перегрузки и коротких замыканиях обусловливают одно весьма существенное достоинство плавких предохранителей - их токоограничивающее действие. Плавкая вставка перегорает много раньше, чем ток в цепи при коротком замыкании успевает достигнуть установившегося значения iуст. Таким образом, ток короткого замыкания ограничивается в 2—5 раз и тем самым снижается разрушительное действие электродинамических сил. Если при возможном установившемся токе короткого замыкания 25 кА плавкая вставка перегорела при 8 кА, то значение электродинамических сил в цепи ограничено более чем в 9 раз. Токоограничивающее действие плавких вставок с использованием металлургического эффекта ниже, чем при других способах токоограничения.

Гашение электрической дуги, возникающей после перегорания плавкой вставки, должно быть осуществлено в возможно короткое время. Время гашения дуги зависит от конструкции предохранителя и принятого способа гашения. Наибольший ток, который плавкий предохранитель может отключить без каких-либо повреждений или деформаций, препятствующих его дальнейшей исправной работе после смены плавкой вставки, называют предельным током отключения предохранителя.

В современных предохранителях с закрытыми патронами без наполнителя дуга гасится за счет высокого давления, возникающего в патроне вследствие появления дуги, а при наличии наполнителя — за счет интенсивного охлаждения дуги наполнителем и высокого давления, вызываемого дугой в узких каналах наполнителя. При этом гашение дуги происходит в ограниченном объеме патрона предохранителя. За пределы патрона не выбрасываются ни пламя дуги, ни ионизированные газы.

Достаточно совершенная система дугогашения совместно с токоограничивающим действием вставки обусловливают неограниченную отключающую способность плавких предохранителей. Это не значит, что предохранители могут отключать сколь угодно большие токи короткого замыкания. Неограниченную отключающую способность следует понимать так: плавкие предохранители могут применяться для защиты цепей, в которых установившийся ток короткого замыкания мог бы достигнуть очень больших значений (в современных крупных энергоустановках можно предполагать 200-500 кА). Плавкие вставки изготовляют из свинца, сплавов свинца с оловом, цинка, меди, серебра и др. Вставки из легкоплавких металлов (свинец, цинк - температура плавления 200-420 °С) позволяют получить невысокую температуру всего предохранителя, однако они обладают невысокой проводимостью и получаются значительных сечений, особенно при больших номинальных токах. Широко распространены цинковые вставки. Пары цинка имеют относительно высокий потенциал ионизации, что способствует гашению дуги. Вставки из меди и серебра получаются меньшего сечения, но недостатком их является высокая температура плавления, что приводит при токах перегрузки к сильному нагреву и быстрому разрушению деталей предохранителя. Медные плавкие вставки должны обязательно иметь антикоррозионное покрытие. В противном случае окисление приведет к постепенному уменьшению сечения вставки и несвоевременному перегоранию.

Применение параллельных плавких вставок (при больших токах) позволяет при том же суммарном поперечном сечении их получить большую поверхность охлаждения, тем самым улучшить условия охлаждения вставок и лучше использовать объем наполнителя (в предохранителях с наполнителем).

 

5-2. КОНСТРУКЦИИ ПРЕДОХРАНИТЕЛЕЙ ОБЩЕГО НАЗНАЧЕНИЯ

 

Пример конструкции предохранителя со сменными плавкими вставками общего назначения без наполнителя приведен на рис. 5-4. Такие предохранители изготовляются на напряжение до 500 В и токи до 1000 А. Гашение дуги у них происходит за счет высокого давления (до 10 МПа и более), возникающего вследствие газогенерации из стенок трубок при высокой температуре электрической дуги. Другая характерная конструкция предохранителей — резьбовая. Примером современной конструкции с наполнителем является приведенный на рис. 5-5 предохранитель серии ПН-2.

Предохранители серии ПН-2 предназначены для защиты силовых цепей до 500 В переменного тока и 440 В постоянного тока, они выполняются на номинальные токи 100, 250, 400 и 630 А, обладают токоограничивающим действием и высокой разрывной способностью.

 


Дата добавления: 2015-07-11; просмотров: 64 | Нарушение авторских прав






mybiblioteka.su - 2015-2024 год. (0.023 сек.)