Читайте также: |
|
Уравнение Д.Бернулли для реального потока жидкости для двух произвольно взятых сечений имеет следующий вид:
, (9)
где: z1, z2 – нивелирная высота соответственно для первого и второго сечений, м;
и – пьезометрическая высота соответственно для первого и второго сечений, м;
и – коэффициент кинетической энергии потока (или коэффициент Кориолиса), учитывающий неравномерность распределения скоростей по сечению потока (величина безразмерная);
и – скоростная высота или скоростной напор, м;
– сумма всех гидравлических потерь на участке между первым и вторым сечение, м.
Итак, с геометрической точки зрения уравнение Д.Бернулли показывает, что сумма трех высот – геометрической, пьезометрической и скоростной с учетом всех гидравлических потерь – есть величина, постоянная вдоль струйки.
С энергетической точки зрения члены уравнения Д.Бернулли имеют следующий смысл:
z – удельная энергия положения; -.
z+p/y — удельная потенциальная энергия жидкости;
v /2g кудельная кинетическая энергия.,
Таким образом, – уравнение Д.Бернулли является примером закона сохранения энергии М.В.Ломоносова в применении к жидкости.
Дата добавления: 2015-07-11; просмотров: 83 | Нарушение авторских прав