Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Пример 2. Имеются следующие данные о заработной плате рабочих - сдельщиков:

Средние величины. | Средняя арифметическая | Пример 5. | Пример 6. | Пример 7. | Пример 9. | Пример 11. |


Читайте также:
  1. IV. Практические наставления. Сила и значение веры, ветхозаветные примеры веры. (10.19-13.25).
  2. V. ПРИМЕРЫ ВЫПОЛНЕНИЯ ЗАДАНИЙ
  3. А) Примеры веры древних, до потопа (11,4-7)
  4. Автономные системы примеры /экодома
  5. Аддитивное и субтрактивное смешение цветов, примеры использования.
  6. Анализ данного примера
  7. Б) Примеры веры Авраама и Сарры (11,8-19)

Имеются следующие данные о заработной плате рабочих - сдельщиков:

Таблица 5.1.

Месячная з/п (варианта - х), руб. Число рабочих, n xn
х = 110 n = 2  
х = 130 n = 6  
х = 160 n = 16  
х = 190 n = 12  
х = 220 n = 14  
ИТОГО    

По данным дискретного ряда распределения видно, что одни и те же значения признака (варианты) повторяются несколько раз. Так, варианта х встречается в совокупности 2 раза, а варианта х-16 раз и т.д.

Число одинаковых значений признака в рядах распределения называется частотой или весом и обозначается символом n.

Вычислим среднюю заработную плату одного рабочего в руб.:

Фонд заработной платы по каждой группе рабочих равен произведению варианты на частоту, а сумма этих произведений дает общий фонд заработной платы всех рабочих.

В соответствии с этим, расчеты можно представить в общем виде:

 

Полученная формула называется средней арифметической взвешенной.

Из нее видно, что средняя зависит не только от значений признака, но и от их частот, т.е. от состава совокупности, от ее структуры. Изменим в условии задачи состав рабочих и исчислим среднюю в измененной структуре.

Статистический материал в результате обработки может быть представлен не только в виде дискретных рядов распределения, но и в виде интервальных вариационных рядов с закрытыми или открытыми интервалами.

Рассмотрим расчет средней арифметической для таких рядов.


Дата добавления: 2015-07-12; просмотров: 53 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Пример 1.| Пример 3.

mybiblioteka.su - 2015-2024 год. (0.011 сек.)