Читайте также: |
|
Экологически важен вопрос о месте строительства электростанций и их мощности.
Теплоэлектростанции (ТЭС) рассеивают около 70% энергии сжигаемого топлива в окружающей среде с дымовыми газами и подогретой водой. В воздух с дымовыми газами попадают твердые частицы, сернистый ангидрид, ртуть, окись азота, углекислота и окиси металлов. Сбрасываемые ТЭС воды имеют температуру 8...10°С. Попадая в природные водоемы, они могут нарушать их тепловой баланс.
Современные АЭС при нормальной работе обеспечивают безопасный уровень радиации внутри станции и в окружающей местности. Однако совершенно ясны последствия аварий на АЭС и масштабы зон поражения радиоактивными выбросами. Поэтому вопрос о месте строительства АЭС на современном этапе требует тщательного исследования возможных последствий при авариях, а также разработки новых безопасных конструкций реакторов. Необходим также пересмотр вопроса о захоронении отходов сгорания ядерного горючего.
Сооружение ГЭС, особенно на равнинных реках и в хозяйственно освоенных районах, оказывает большое влияние на использование земель и водных ресурсов. В этих условиях остро стоит вопрос о мелководных зонах водохранилищ, которые в процессе эксплуатации ГЭС периодически подтопляются и осушаются. Искусственный гидрологический режим мелководных зон водохранилищ отрицательно сказывается на биосфере, в основном в результате нарушения кислородного режима. Кроме того, искусственные водохранилища могут существенно влиять на колебания уровня грунтовых вод и климат смежных территорий.
Ряд отрицательных экологических последствий создания крупных водохранилищ еще изучен недостаточно, однако следует отметить, что в США имеется 1220 ГЭС, средняя мощность которых 70 МВт, а на территории бывшего СССР около 200 ГЭС, их средняя мощность 300 МВт. Среди них такие гиганты, как Саяно-Шушенская — 6400 МВт, Красноярская — 6000 МВт, Зейская — 1290 МВт и др.
Номинальные напряжения электрических сетей общего назначения переменного тока в РФ установлены действующим стандартом (табл.1).
Таблица.1
Номинальные междуфазные напряжения, кВ, для напряжений свыше 1000 В по ГОСТ 721-77* (с изменениями 1989 г.)
* Номинальные напряжения, указанные в скобках, для вновь проектируемых сетей не рекомендуются.
** Для трансформаторов и AT, присоединяемых непосредственно к шинам генераторного напряжения электрических станций или к выводам генераторов.
*** В нормативно-технической документации на отдельные виды трансформаторов и AT, утвержденной в установленном порядке, должно указываться только одно из двух значений напряжения вторичных обмоток. В особых случаях допускается применение второго напряжения, что должно специально определяться в нормативно-технической документации.
Международная электротехническая комиссия (МЭК) рекомендует стандартные напряжения выше 1000 В для систем с частотой 50 Гц, указанные в табл.2.
Таблица.2
1 Не рекомендуется для городских электрических сетей.
2 Рассматривается унификация этих значений.
3 Используется также 440 кВ.
4 Допускается применение напряжений в диапазоне 765-800 кВ при условии, что испытательное напряжение электрооборудования такое же, как и для 765 кВ.
Примечания.
1. Напряжения, указанные в скобках, для вновь проектируемых сетей не рекомендуются.
2. Промежуточное значение напряжения между 765 и 1200 кВ, существенно отличающееся от этих значений, будет введено, если оно окажется необходимым в каком-нибудь географическом районе; в этом случае в данном районе не должны применяться напряжения 765 и 1200 кВ.
3. В одном географическом районе рекомендуется применение одного значения из следующих групп наибольших рабочих напряжений 245—300—363; 363-420; 420-525.
Известен ряд попыток определить экономические зоны применения электропередач разных напряжений. Удовлетворительные результаты для всей шкалы номинальных напряжений в диапазоне от 35 до 1150 кВ дает эмпирическая формула, предложенная Г. А. Илларионовым:
Uэк = 1000, (1.1)
V500/L + 2500/P
где: L — длина линии, км,
Р — передаваемая мощность, МВт.
В России получили распространение две системы напряжений электрических сетей переменного тока (110 кВ и выше): 110—330— 750 кВ - в ОЭС Северо-Запада и частично Центра - и 110—220— 500 кВ — в ОЭС центральных и восточных регионов страны. Для этих ОЭС в качестве следующей ступени принято напряжение 1150 кВ, введенное в ГОСТ в 1977 г. Ряд построенных участков электропередачи 1150 кВ временно работают на напряжении 500 кВ.
На нынешнем этапе развития ЕЭС России роль системообразующих сетей выполняют сети 330, 500, 750, в ряде энергосистем — 220 кВ. Первой ступенью распределительных сетей общего пользования являются сети 220, 330 и частично 500 кВ, второй ступенью — 110 и 220 кВ; затем электроэнергия распределяется по сети электроснабжения отдельных потребителей.
Условность деления сетей на системообразующие и распределительные по номинальному напряжению заключается в том, что по мере роста плотности нагрузок, мощности электростанций и охвата территории электрическими сетями увеличивается напряжение распределительной сети. Это означает, что сети, выполняющие функции системообразующих, с появлением в энергосистемах сетей более высокого напряжения постепенно «передают» им эти функции, превращаясь в распределительные. Распределительная сеть общего назначения всегда строится по ступенчатому принципу путем последовательного «наложения» сетей нескольких напряжений. Появление следующей ступени напряжения связано с ростом мощности электростанций и целесообразностью ее выдачи на более высоком напряжении. Превращение сети в распределительную приводит к сокращению длины отдельных линий за счет присоединения к сети новых ПС, а также к изменению значений и направлений потоков мощности по линиям.
При существующих плотностях электрических нагрузок и развитой сети 500 кВ отказ от классической шкалы номинальных напряжений с шагом около двух (500/220/110 кВ) и постепенным переходом к шагу шкалы около четырех (500/110 кВ) является технически
и экономически обоснованным решением. Такая тенденция подтверждается опытом передовых в техническом отношении зарубежных стран, когда сети промежуточного напряжения (220—275 кВ) ограничиваются в своем развитии. Наиболее последовательно такая техническая политика проводится в энергосистемах Великобритании, Италии, Германии и других стран. Так, в Великобритании все шире используется трансформация 400/132 кВ (консервируется сеть 275 кВ), в Германии — 380/110 кВ (ограничивается в развитии сеть 220 кВ), в Италии — 380/132 кВ (консервируется сеть 150 кВ) и т. д.
Наибольшее распространение в качестве распределительных получили сети 110 кВ как в ОЭС с системой напряжений 220—500 кВ, так и 330-750 кВ. Удельный вес линий 110 кВ составляет около 70 % общей протяженности ВЛ 110 кВ и выше. На этом напряжении осуществляется электроснабжение промышленных предприятий и энергоузлов, городов, электрификация железнодорожного и трубопроводного транспорта; они являются верхней ступенью распределения электроэнергии в сельской местности. Напряжение 150 кВ получило развитие только в Кольской энергосистеме и для использования в других регионах страны не рекомендуется.
Напряжения 6-10-20-35 кВ предназначены для распределительных сетей в городах, сельской местности и на промышленных предприятиях. Преимущественное распространение имеет напряжение 10 кВ; сети 6 кВ сохраняют значительный удельный вес по протяженности, но, как правило, не развиваются и по возможности заменяются сетями 10 кВ. К этому классу примыкает имеющееся в ГОСТ напряжение 20 кВ, получившее ограниченное распространение (в одном из центральных районов г. Москвы).
Напряжение 35 кВ используется для создания ЦП сетей 10 кВ в сельской местности (реже используется трансформация 35/0,4 кВ).
Дата добавления: 2015-07-11; просмотров: 711 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
САМОСТОЯТЕЛЬНАЯ РАБОТА. РЕШЕНИЕ ТИПОВЫХ ЗАДАЧ | | | ВЕКТОРНАЯ ДИАГРАММА ЛЭП |