|
ростного движения пассажирских поездов укладывают рельсы Р65. Рельсы выпускают стандартной длины 25 м. Кроме того, для укладки в кривых изготавливают укороченные рельсы длиной 24,92 и 24,84 м. В качестве уравнительных рельсов при бесстыковом пути, а также при укладке стрелочных переводов используют рельсы прежней стандартной длины (12,5 м) и укороченные (12,46; 12,42 и 12,38 м).
Сроки службы рельсов измеряются количеством проследовавшего по ним тоннажа и в среднем до их перекладки составляют для термически упрочненных рельсов Р65 500 млн. т брутто, а для Р50— 350 млн. т. Срок службы рельсов Р75 примерно на 30 % выше, чем для Р65.
Повышение сроков службы рельсов достигается комплексом взаимосвязанных мероприятий: увеличением массы рельсов, повышением качества рельсовой стали, ее термоупрочнением и легированием, совер
шенствованием поперечных профилей, улучшением условий работы рельсов за счет бесстыкового пути, шлифовки поверхности катания и смазки боковой рабочей грани головки в кривых и др. Для замены выявленных дефектных рельсов на каждом километре пути имеется так называемый километровый запас- рельсов, хранящихся на специальных станках.
7.5. РЕЛЬСОВЫЕ СКРЕПЛЕНИЯ. ПРОТИВОУГОНЫ
Рельсовый путь представляет собой две непрерывные рельсовые нити, расположенные на определенном расстоянии друг от друга. Это обеспечивается за счет крепления рельсов к шпалам и отдельных рельсовых звеньев между собой. Рельсы к шпалам крепят с помощью промежуточных скреплений, которые должны обеспечивать надежную и достаточно упругую связь рельсов со шпалами, сохранять постоянство ширины колеи и необходимую под- уклонку рельсов, не допускать продольного смещения и опрокидывания рельсов. При железобетонных шпалах они должны, кроме того, обеспечивать электрическую изоляцию рельсов и шпал. Промежуточные скрепления бывают трех основных видов: нераздельные, смешанные и раздельные.
При нераздельном скреплении (рис. 7.8, а) рельс и подкладки, на которые он опирается, крепятся к шпалам одними и теми же костылями или шурупами, а при смешанном скреплении (рис. 7.8, б) подкладки, кроме того, крепятся к шпалам дополнительными костылями. Смешанное костыльное скрепление с клинчатыми подкладками с уклоном 1:20 широко распространено на дорогах нашей страны. Его преимуществами являются простота конструкции, небольшая масса, сравнительная легкость зашивки, перешивки и разборки пути. Однако такое скрепление не гарантирует постоянства ширины колеи и способствует механическому износу шпал.
При раздельном скреплении (рис. 7.9) рельс крепится к подкладкам жесткими или упругими клеммами и
|
Рис 7 8 Промежуточные костыльные скрепления для деревяннык шпал: а — нераздельное; б — смешанное, / — рельс, 2 - костыль, 3 — подкладка, 4 — шпала |
Рис. 7.9 Раздельное скрепление типа КБ для железобетонных шпал
/ — клеммный прижнмной болт, 2 — клемма, 3 — изолирующая втулка, 4 — закладной болт, 5 — анкерная шайба, 6—прокладка, 7 --резиновая подкладка, 8 — подкладка металлическая, 9 — плоская шайба; 10—шайба пружинная двухвит- ковая
Рис 7.10. Двухголовая накладка в стыке на весу |
клеммными болтами, а подкладки к шпалам — болтами или шурупами. Достоинствами раздельных скреплений являются возможность смены рельсов без снятия подкладок, большое сопротивление продольным усилиям, обеспечение постоянства ширины колеи. Поэтому постепенно переходят к нему, хотя оно несколько дороже и сложнее по конструкции Кроме того, раздельное скрепление не требует дополнительного закрепления пути от угона и дает снижение эксплуатационных расходов по сравнению с другими видами скреплений.
Соединение рельсовых звеньев между собой осуществляется с помощью стыковых скреплений, основными элементами которых являются накладки, болты с гайками и пружинные шайбы. Стыковые накладки предназначены для соединения рельсов и восприятия в стыке изгибающих и поперечных сил. Двухголовые накладки (рис. 7.10) изготовляют из высокопрочной стали и подвергают закалке. Болты, как и накладки, должны обладать высокой прочностью. Под их гайки для обеспечения постоянного натяжения подкла- дывают пружинные шайбы. В последнее время переходят на применение шестидырных накладок.
Пц расположению относительно шпал различают стыки на весу, на шпалах и на сдвоенных шпалах. В качестве стандартных приняты стыки на весу (см. рис. 7.10), обеспечивающие большую упругость и удобство подбивки балласта под стыковые шпалы.
Так как с изменением температуры длина рельсов меняется, между торцами рельсов в стыках оставляют зазор, наибольшая величина которого во избежание сильных ударов колес подвижного состава не должна превышать 21 мм. Каждой температуре рельсов соответствует определенный стыковой зазор
^ = {tmi-th
Рис 7 11 Поперечный разрез изолирующего стыка а —с объемлющими металлическими накладками, б — клееболтового, / рельс, 2— накладка, 3 - прокладка боковая, 4 — планка и < фибры или полиэтилена под болты, 5 - стопорная планка, 6 — втулка, 7 — изолирующая прокладка нижняя, 8 — подкладка, 9 - болт стыковой, 10 — гайка, Ч — шайба, 12 — изоляция из стеклоткани, пропитанной эпоксидным клеем, 13 — изоляция на болте |
где у — коэффициент линейного расширения стали; /р —длина рельса, м, /тах, t— соответственно наибольшая температура в данной местности и температура в момент укладки рельса.
Для возможности некоторого перемещения концов рельсов в стыках болтовые отверстия в рельсах делали овальными (больший диаметр вдоль рельса) или круглыми, но большего диаметра, чем болты. Вновь выпускаемые рельсы имеют круглые отверстия, что повышает прочность рельсов и упрощает технологию их изготовления.
На линиях с автоблокировкой на границах блок-участков устраивают изолирующие стыки, чтобы электрический ток не мог пройти от одного из соединяемых рельсов к другому. Существует два типа изолирующих стыков: с металлическими объемлющими накладками и клее- болтовые (рис. 7.11). В стыках первого типа изоляцию обеспечивают постановкой прокладок и втулок из фибры, текстолита или полиэтилена. В стыковом зазоре также ставится прокладка из текстолита или три- копа, имеющая очертания рельса. В последнее время все шире применяются клееболтовые стыки, в которых металлические стыковые накладки, изолирующие прокладки из стеклоткани и болты с изолирующими втулками склеиваются эпоксидным клеем с концами рельсов в монолитную конструкцию.
На линиях с электрической тягой и автоблокировкой для беспрепятственного прохождения через стык тока ставят специальные стыковые соединители, устройство которых будет рассмотрено в соответствующих разделах.
Под действием сил, которые создаются при движении поездов по рельсам и в особенности при торможении на затяжных спусках, может происходить продольное перемещение рельсов по шпалам или вместе со шпалами по балласту, называемое угоном пути. На двухпутных участках угон происходит по направлению движения, а на однопутных линиях угон бывает двусторонний.
Наилучшим способом предотвращения угона пути является применение щебеночного балласта и раз- ш
Рис 7 12
Рис. 7 12 Пружинный противоугон
Рис. 7 13 Самозаклинивающийся противоугон
дельных промежуточных скреплений, которые обеспечивают достаточное сопротивление продольному перемещению рельсов и не требуют дополнительных средств закрепления.
При нераздельном и смешаннрм скреплениях для предотвращения угона пути применяют противоугоны. Стандартные противоугоны — это пружинные (рис. 7.12), представляющие собой пружинную скобу, защемляемую на подошве рельса и упирающуюся в шпалу. Самозаклинивающийся противоугон (рис. 7.13) состоит из скобы и клина с упором, который прижимается к шпале и при перемещении рельса заклинивается все сильнее. Пружинные противоугоны легче клиновых, состоят из одной детали, хорошо работают как на однопутных, так и на двухпутных линиях, уход за ними требует меньших затрат рабочей силы. Противоугоны устанавливают от 18 до 44 пар на 25-метровом звене.
7.6. БЕССТЫКОВОЙ ПУТЬ
С начала 50-х годов на железных дорогах все шире внедряется бесстыковой путь, являющийся наиболее прогрессивной и совершенной конструкцией. За счет устранения стыков снижается динамическое воздействие на путь, существенно уменьшается износ колес подвижного состава и сопротивление движению
поездов, что сокращает расход топлива и электроэнергии на тягу поездов. Резкое сокращение числа стыковых скреплений за счет сварки отдельных звеньев в плети дает экономию металла до 1,8 т на каждый километр пути, позволяет снизить расходы на содержание и ремонт пути. Срок службы рельсов бесстыкового пути возрастает примерно на 20 % по сравнению со стыковым, деревянных шпал—на 8— 13 %, балласта (до очистки) — на 25 %, а затраты труда на текущее содержание пути снижаются на 10— 30%
Для бесстыкового пути рельсовые плети изготавливают, как правило, из термически упрочненных рельсов Р65 или Р75 стандартной длины, не имеющих болтовых отверстий. Сваривают рельсы электроконтактным способом на стационарных или передвижных контактно-сварочных машинах.
Длина сварных плетей на сети железных дорог СССР обычно принимается не более 800 м, что соответствует длине составов специальных поездов из платформ, оборудованных роликами, которыми плети доставляются на перегон. При необходимости длину плетей увеличивают до 950 м, для чего к плети длиной 800 м на месте укладки приваривают плеть длиной 150 м. Минимальная длина рельсовых плетей равна 250 м, однако при техническом обосновании и в коротких тоннелях применяют и более короткие плети, но не менее 150 м.
Между сварными плетями укладывают две—четыре пары уравнительных рельсов длиной 12,5 м или переменной длины (12,5; 12,46; 12,42; 12,38 м) для возможности сезонной регулировки длины плетей перед летними и зимними периодами. Весь комплект уложенных в путь уравнительных рельсов называется уравнительным пролетом. Для обеспечения необходимой прочности пути рельсовые стыки в уравнительных пролетах соединяют только шести- дырными накладками и стыковыми болтами из стали повышенной прочности.
Одна из основных особенностей бесстыкового пути состоит в том, что хорошо закрепленные рельсовые плети при повышении или понижении температуры не могут изменять свою длину. Из-за этого в них возникают значительные продольные растягивающие или сжимающие силы, достигающие 100— 200 кН, которые в жаркую погоду могут привести к выбросу пути в сторону, а в сильный мороз — к излому плети с образованием опасного зазора. Поэтому бесстыковой путь обычно укладывают на железобетонных шпалах с раздельным скреплением и щебеночном балласте. Балластную призму тщательно уплотняют.
Существует два способа эксплуатации бесстыкового пути. Первый способ, являющийся наиболее эффективным и широко применяемым, предусматривает закрепление рельсов на постоянный температурный режим эксплуатации. Второй способ, применяемый при больших перепадах температур по сезонам года, предусматривает сезонные разрядки температурных напряжений с закреплением плетей два раза в год: на летний и зимний режимы. При этом ослабляют скрепления рельсов со шпалами, начиная от концов плети, и снимают уравнительные рельсы. Снятие напряжения в плетях сопровождается удлинением или укорочением их, после чего укладываются новые уравнительные рельсы длиннее или короче прежних.
Для повышения эффективности бесстыкового пути стремятся к сокращению числа уравнительных пролетов, на содержание которых уходит до 25 % всех затрат на его эксплуатацию, за счет укладки плетей сверхнормативной длины (более 950 м). После многолетних опытов с 1986 г. разрешена укладка таких плетей с соблюдением ряда дополнительных требований к их изготовлению и эксплуатации.
Применение бесстыкового пути особенно эффективно на участках скоростного движения поездов, где к верхнему строению пути предъявляются повышенные требования. Особое внимание при этом уделяется предотвращению и устранению волнообразного износа поверхности катания рельсов, который ликвидируется шлифовкой их специальными рельсошлифовальными поездами. Путь иадежио закрепляют от угона. При смешанном скреплении рельсы крепят на каждом конце шпалы пятью костылями.
Глава 8
УСТРОЙСТВО РЕЛЬСОВОЙ КОЛЕИ
8.1. ОБЩИЕ СВЕДЕНИЯ
Устройство рельсовой колеи тесно связано с конструкцией и размерами колесных пар подвижного состава. Колесная пара состоит из стальной оси, на которую наглухо насажены колеса, имеющие для предотвращения схода с рельсов направляющие гребни (рис. 8.1). Поверхность катания колес подвижного состава в средней части имеет коничность '/го, которая обеспечивает более равномерный износ, большее сопротивление горизонтальным силам, направленным поперек пути, меньшую чувствительность к неисправностям его и препятствует появлению желоба на поверхности катания, затрудняющего прохождение колесных пар по стрелочным переводам. В соответствии с этим и рельсы устанавливаются также с подуклонкой '/го, что при деревянных шпалах достигается за счет клинчатых подкладок, а при железобетонных — соответствующим наклоном поверхности шпал в зоне опирания рельсов.
Расстояние между внутренними
п—Г | 1-------- 1-------- | т—Л |
У——L i | 1-------- (—----- 1 то±з | J---4I JL |
а, 1 | ||
i | I | |
|
|
Рис 8.1 Колесная пара на рельсовой колее |
гранями головок рельсов называется шириной колеи. Эта ширина складывается из расстояния между колесами (1440±3 мм), двух толщин гребней (от 25 до 33 мм) и зазоров между колесами и рельсами, необходимых для свободного прохождения колесных пар. Ширина нормальной (широкой) колеи в прямых и кривых участках пути с радиусом более 349 м принята в СССР 1520 мм с допусками в сторону уширения б мм и в сторону сужения 4 мм. До 1972 г. нормальной на наших дорогах считалась ширина колеи 1524 мм; сужение ее до 1520 мм принято для уменьшения зазора между колесами и рельсами, что при возросших скоростях движения способствует уменьшению расстройств пути.
В соответствии с ПТЭ верх головок рельсов обеих нитей пути на прямых участках должен быть в одном уровне Разрешается на прямых участках пути на всей протяженности каждого из них содержать одну рельсовую нить на 6 мм выше другой.
При сооружении пути стыки на обеих рельсовых нитях располагают точно один против другого по наугольнику, что по сравнению с расположением стыков вразбежку уменьшает число ударов колесных пар о рельсы, а также позволяет заготавливать и менять рельсо- шпальную решетку целыми звеньями с помощью путеукладчиков.
Для того чтобы каждая колесная пара не могла поворачиваться вокруг вертикальной оси, колесные пары вагона или локомотива соеди-
| м |
| м | р |
|
|
|
| |
|
|
|
|
а) |
6) |
СИ) СИ) СИ) СИ) тоо |
|
h-
в) |
г) |
н |
|
ШО |
то |
Ш50
|
mod
Рис 8 2 Жесткая и полная колесные базы:
а— электровоза ВЛ8, б — одной секции тепловоза ТЭЗ, в— паровоза серии ФД, г — четырехосного полувагона
|
няют по две и более жесткой рамой. Расстояние между крайними осями, соединенными рамой, называется жесткой базой, а между крайними осями вагона или локомотива — полной колесной базой (рис. 8.2)- Жесткое соединение колесных пар обеспечивает устойчивое положение их на рельсах, но в то же время затрудняет прохождение в кривых малого радиуса, где возможно их заклинивание. Для облегчения вписывания в кривые современный подвижной состав выпускают на отдельных тележках с небольшими жесткими базами.
8.2. ОСОБЕННОСТИ УСТРОЙСТВА ПУТИ В КРИВЫХ
В кривых участках устройство пути имеет ряд особенностей, основными из которых являются: возвышение наружного рельса над внутренним, наличие переходных кривых, уширение колеи при малых радиусах, укладка укороченных рельсов на внутренней рельсовой нити, усиление пути, увеличение расстояния между осями путей на двух- и многопутных линиях.
Возвышение наружного рельса предусматривается при радиусе кривой 4000 м и менее для того, чтобы нагрузка на каждую рельсовую нить была примерно одинаковой с учетом действия центробежной силы.
Известно, что при следовании подвижного состава по кривой радиусом R возникает центробежная сила
.___ тог _____ Gv2
где т — масса;
G — масса единицы подвижного
состава; g — ускорение силы тяжести При возвышении наружного рельса на велич.ину h появляется составляющая сила веса И, направленная внутрь кривой. На рис. 8.3 видно, что И/G ~h/s\, откуда Н — = Gh/S],
Для одинакового давления на рельсовые нити необходимо, чтобы Н уравновешивала /, тогда равнодействующая N будет перпендикулярна наклонной плоскости пути.
Учитывая, что угол а мал и при максимальном допускаемом возвышении наружного рельса 150 мм cosa = 0,996, можно принять, что Нж/. Тогда
Gv2 _ h
~w=G~•
откуда искомое h — siv'2/gR.
Подставляя S|*=l,6 м, g = = 9,81 м/с2 и выражая скорость
Рис 8 3 Схема сил, действующих на подвижной состав в кривой при возвышении наружного рельса
|
Рис 8.4 План и профиль переходной кривой. НПК - начало переходной кривой. КПК — конец переходной кривой |
Просриль |
ос} |
Н.
1Рг
|
v в км/ч, а радиус R в м, получим возвышение в мм
/г=12,5у2/Я.
Поскольку в реальных условиях по кривым проходят поезда разной массы Q, и с различными скоростями о,, то для равномерного износа рельсов в приведенную формулу подставляют среднюю квадратичес- кую скорость
"ер—V 2Q.' '
При h= 12,5Уср//? в поездах, следующих со скоростями выше оср, на пассажиров и грузы будет действовать непогашенное ускорение, равное разнице между центробежным ускорением v2/R и направленным к центру кривой ускорением gh/si.
На дорогах СССР допускаемое непогашенное ускорение составляет 0,7 м/с2 и лишь в исключительных случаях 0,9 м/с2. При движении поездов со скоростью менее оср нагрузка на внутренний рельс будет больше, чем на наружный.
Устройство переходных кривых связано с необходимостью плавного сопряжения кривой с примыкающей прямой как в плане, так и в профиле. Переходная кривая в плане (рис. 8.4) представляет собой кривую переменного радиуса, уменьшающегося от бесконечно большого до R — радиуса круговой кривой с уменьшением кривизны пропорционально изменению длины. Кривая, обладающая таким свойством, представляет собой радиоидальную спираль, уравнение которой выражается в виде ряда
= Г 2х4 293х" 1
У ~ 6С I + 35 С2 + 237 ООО С4 + "" J '
где С — параметр переходной кривой (C=IR).
В связи с тем что длина переходной кривой / мала по сравнению. с С, практически достаточно ограничиться двумя первыми членами ряда приведенной формулы. В профиле переходная кривая в обычных условиях представляет собой наклонную линию с однообразным уклоном i = h/l.
Уширение колеи производится для обеспечения вписывания под
вижного состава в кривые. Поскольку колесные пары закреплены в раме тележки таким образом, что в пределах жесткой базы они всегда параллельны между собой, в кривой только одна колесная пара может расположиться по радиусу, а остальные будут находиться под углом Это вызывает необходимость увеличения зазора между гребнями колес и рельсами во избежание заклинивания колесных пар (рис. 8.5). Для свободного вписывания двухосной тележки в кривую необходимая ширина колеи
S'=<?max + /«+ 4,
где f„ — стрела изгиба кривой по наружной нити при хорде 2X; ^тах—максимальное расстояние между наружными гранями гребней колес;
4 — допуск по сужению колеи, мм.
Установлены следующие нормы ширины колеи в кривых: при Я>350 м —1520 мм; при Я = 349-Ь 300 м— 1530' мм, при /?<299 м —1535 мм.
Укладка укороченных рельсов во внутреннюю нить необходима для исключения разбежки стыков. Поскольку внутренняя рельсовая нить в кривой короче наружной, то укладка, в нее рельсов той же длины, что и в наружную, вызовет забегание стыков вперед на внутренней нити. Для устранения разбежки стыков при каждом радиусе кривой необходимо иметь свою величину укорочения рельса. В целях унификации применяют стандартные уко-
вую двухосной тележки |
рочения рельсовых звеньев длиной 25 м на 80 и 160 мм. Общее число укороченных рельсов п, требующихся для укладки в кривой,
n = e/k,
где г — общее укорочение,
k — стандартное укорочение одного рельса
Укладку укороченных рельсов во внутренней нити чередуют с укладкой рельсов нормальной длины так, чтобы забег стыков не превышал половины укорочения, т. е. 40; 80 мм.
Усиление пути в кривых производится при 1200 м для обеспечения необходимой равнопрочности с примыкающими прямыми. Для этого увеличивают число шпал на километр, уширяют балластную призму с наружной стороны кривой, ставят несимметричные подкладки с большим плечом в наружную сторону, отбирают наиболее твердые рельсы. В круговых кривых на двух- и многопутных линиях увеличивается расстояние между осями путей в соответствии с требованиями габарита, что достигается в пределах переходной кривой внутреннего пути за счет изменения ее параметра С.
8.3. УСТРОЙСТВО ПУТИ НА МОСТАХ И В ТОННЕЛЯХ
Конструкция пути на мостах и в тоннелях имеет ряд. особенностей. На металлических мостах рельсовый путь обычно делают без балласта на деревянных брусьях, уложенных на расстоянии 10—15 см друг от друга. Брусья крепят болтами к продольным балкам. Для удержания подвижного состава в случае схода его с рельсов на существующих мостах снаружи колеи имеются деревянные охранные брусья,а внутри — контррельсы (рис. 8.6, а). На строящихся мостах для этой цели используют металлические охранные уголки специального профиля (рис. 8.6, б).
На мостах с большими металлическими пролетными строениями укладывают путь на металлических поперечинах. На ряде металлических мостов и, в частности, на мосту через р. Амур на БАМе применена конструкция пути на сплошных железобетонных плитах (рис. 8.6, г), дающая сокращение затрат на содержание мостового полотна.
На каменных, бетонных и железобетонных мостах, а также на путепроводах, расположенных в пределах станции, путь устраивают на щебеночном балласте и обычных шпалах, для чего на мосту устраивают корыто (рис. 8.6, в) шириной поверху на однопутных линиях не менее 3,6 м, а на двухпутных — не менее 7,7 м. Толщину щебеночного балласта на мостах и путепроводах принимают, как правило, не менее 25 см. Путь на балласте безопасен в пожарном отношении, дешевле, чем на мостовых брусьях, удобнее в эксплуатации, легко выправляется в плане и профиле, однако он значительно тяжелее.
Рис 8 6 Конструкции пути на постоянных мостах |
На подходах к мостам независимо от рода балласта, принятого на данной линии, путь с обеих сторон укладывают на щебеночном балласте, что повышает устойчивость пути и уменьшает засорение пылью конструкций моста при движении поездов. На подходах к безбалластным мостам путь полностью закреплен от угона; на самих мостах противоугоны ставят как исключение. На больших металлических мостах во избежание разрыва стыков при температурных изменениях длины пролетных строений устанавливают специальные приборы, обеспечивающие взаимное смещение остряка и рамного рельса (рис. 8.7).
Рис. 8.7. Уравнительный прибор |
Путь в тоннелях рекомендуется делать на железобетонных шпалах с эпюрой на одну ступень выше, чем на подходах. На протяженности 200 м с каждой стороны перед тоннелем и в самом тоннеле путь должен быть на щебеночном балласте толщиной не менее 25 см. Путь в тоннеле может быть и на жестком бетонном основании со скреплениями раздельного типа с прокладками-амортизаторами. При длине тоннеля более 300 м обычно применяют бесстыковой путь.
Соединительные Комплект Стрелка ПУти крестобинной Упорная нить части с перебодной кривой контррельсами |
Конец крибой |
Рис 9 1. Схема обыкновенного стрелочного перевода- |
I — переводной механизм, 2, 4 - рамные рельсы, 3 — остряки, 5,8- контррельсы, б — усовик, 7 — сердечник крестовины, 9 — переводные брусья |
На мостах и тоннелях не допускается применение разных типов рельсов, переходных стыков и рельсовых рубок. При грузонапряженности линии до 10 млн. т-км/км на мостах и в тоннелях используют рельсы Р50, а при большей грузонапряженности — Р65.
ГлдВЗ 9
СОЕДИНЕНИЯ И ПЕРЕСЕЧЕНИЯ ПУТЕЙ
9.1. СТРЕЛОЧНЫЕ ПЕРЕВОДЫ
Для перехода подвижного состава с одного пути на другой служат устройства по соединению и Пересечению путей, относящиеся к верхнему строению. Соединение путей между собой осуществляется стрелочными переводами, а пересечение путей — глухими пересечениями. С применением стрелочных переводов и глухих пересечений устраивают соединения путей, называемые стрелочными улицами и съездами.
В зависимости от назначения и условий соединения путей между собой стрелочные переводы подразделяют на одиночные, двойные и перекрестные. Одиночные переводы делятся на обыкновенные, симметричные и несимметричные.
Обыкновенный стрелочный перевод (рис. 9.1) служит для соединения двух путей. Он может быть право- или левосторонним и применяется при отклонении бокового пути от прямого в ту или другую сторону. Этот вид переводов имеет наибольшее распространение. В состав стрелочного перевода входят собственно стрелка, крестовина с контррельсами, соединительная часть между ними и переводные брусья.
Дата добавления: 2015-08-28; просмотров: 63 | Нарушение авторских прав
<== предыдущая лекция | | | следующая лекция ==> |