Читайте также: |
|
При всех своих преимуществах СТМ как литографический прибор имеет некоторые недостатки. Чтобы сообщить туннелирующим электронам энергию, достаточную для модификации молекул резиста, необходимо прикладывать высокое ускоряющее напряжение и поддерживать ток выше некоторого критического значения. Типичное значение энергии деструкции молекул резиста типа РММА составляет примерно 25 эВ. Чтобы достичь таких энергий, приходится, увеличивая напряжение, смещаться из области туннелирования в область автоэмиссии, что затрудняет работу в воздушной среде. В то же время большое значение тока может привести к нежелательным эффектам, например, разогреву резиста и острия иглы, накоплению заряда в резисте. Избавиться от этого недостатка можно путем совместного использования лазера и СТМ. При совместном использовании прецизионного, но маломощного СТМ и мощного лазера с широким пучком на лазер возлагается функция возбуждения молекул резиста, которые затем могут быть легко разрушены под действием туннельного тока.
При облучении резиста светом видимой части спектра или мягким ультрафиолетовым светом энергии фотонов, которая в этом случае составляет 2 - 20 эВ, недостаточно для фотодеструкции или фотоионизации полимерных молекул. Постоянно приложенное напряжение к игле СТМ сообщает электронам недостающую энергию, что вызывает деструкцию молекул резиста. Выбирая соответствующим образом рабочую частоту лазера, получаем возможность селективного возбуждения и разрыва связей в молекулах резиста. Существует несколько факторов, способствующих реализации описанного метода. Во-первых, поглощение острием иглы СТМ электромагнитного поля (фотонов) приводит к фотоэмиссии электронов. Поскольку значение туннельного тока поддерживается постоянным, то данный эффект вызывает увеличение средней энергии туннелирующих электронов, которые теперь способны вызвать ударную ионизацию молекул резиста. Во-вторых, вблизи острия иглы СТМ имеет место эффект усиления электромагнитного поля на несколько порядков, что дает возможность не только использовать лазер меньшей мощности, но и локализовать его влияние в активной области вблизи острия иглы СТМ.
Рассмотренный выше метод литографии предъявляет повышенные требования к стабильности лазерного излучения ввиду сильного влияния последнего на характер туннелирования электронов.
Если обобщить все сказанное о применении СТМ в нанолитографии, то в итоге можно сформулировать следующее; формирование и сборка наноструктур с помощью сканирующего зонда по существу перспективна, но есть два ограничения — она относительно дорогая и относительно медленная. Хотя достигнуты значительные успехи в построении машин, в том числе и СТМ, использующих сотни или даже тысячи зондов одновременно, создание наноструктур с применением методов зондового сканирования все еще очень похоже на ручную сборку.
Дата добавления: 2015-10-28; просмотров: 48 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Зондовые нанотехнологии. | | | Сканирующая туннельная микроскопия. |