Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Законы частотного регулирования

Электромагнитные переходные процессы в цепях возбуждения и форсирование процессов возбуждения | Переходный процесс электропривода с двигателем независимого возбуждения при из­менении магнитного потока | Переходные процессы при пуске и торможении электропривода с короткозамкнутым | Если учесть, что , то поэтому | Регулирование координат электропривода | Основные показатели способов регулирования координат электропривода | Система генератор – двигатель (ГД). | Характеристик в системе ГД | Система тиристорный преобразователь – двигатель (ТП – Д). | Расчет статических механических характеристик в системе ТП-Д |


Читайте также:
  1. Биологи и генетики увидели в схеме построения Речи Человеческой схему и законы построения ДНК.
  2. БУДУТ НОРМАЛЬНЫЕ ЗАКОНЫ в нашей несчастной стране
  3. Влияние сверхвысокочастотного излучения горочных датчиков на эксплуатационный персонал
  4. Вопрос 10 курс трех красных знамен знамен и его провал. Политика урегулирования. Большой Скачок
  5. Вопрос 74 Меры нетарифного регулирования внешнеторговой деятельности
  6. ГЛАВА V Как законы водворяют равенство в демократии
  7. ГЛАВА VI Как законы должны поддерживать умеренность в демократии

При выборе соотношения между частотой и напряжением, подводимым к статору АД, чаще всего исходят из условия сохранения перегрузочной способности двигателя для любой из его регулировочных механических характери­стик. Основной закон частотного регулирования (закон Костенко), известный ещё из курса электрических машин, в математической форме имеет вид

, где

МС и МC -статические моменты сопротивления соответствующие ско­рости двигателя при частотах f1 и f1.

U1 и U1 -соответствующие частотам f1 и f1 напряжения.

В относительных единицах этот закон запишется так:

, где

Из него следует, что закон изменения напряжения определяется не только частотой источника питания, но и характером изменения момента сопро­тивления механизма на валу двигателя при изменении угловой скорости.

Согласно формуле Бланка

или в относительных единицах

Учитывая, что , а , можно написать

Тогда основной закон после подстановки в формулу

значения mC, будет иметь вид:

При постоянном моменте на валу двигателя МС

(следовательно и mС) не зависит от скорости, а значит и частоты. Поэтому х=0 и

или

, а в именованных единицах

Полученный закон – это закон пропорционального управления. Механические характеристики двигателя при этом законе изобра­жены на рисунке. Жесткость характеристик сохраняется сравнительно вы­сокой. Критический момент в зоне частот, близких к основной, практически остается неизменной. Однако при значи­тельном снижении чистоты (ниже 0,5f1H) сопротивление становится соизмеримым по величине с сопротивлением r1 статора или даже меньше его. Влияние падения напряжения на r1 становится весьма заметным, к намагничивающей цепи двигателя подводится тем меньшее напряжение, чем меньше частота. Это вызывает уменьшение критического момента, следовательно, перегрузочной способ­ности двигателя.

Плавное регулирование до f1=0 при этом законе невозможно. Невозможно также обес­печить устойчивую работу двигателя при Мс=const в широком диапазоне регулирования частоты.

Закон пропорционального регулирования можно легко реализовать при разомкнутой системе, Этот закон целесообразен только для крупных АД, а для мелких, маломощных он малоэффективен, т.к. уже при j1<0,5 пе­регрузочная способность двигателя заметно снижается (у них большое r1). Потери в двигателе больше, чем при основном законе.

При идеальном вентиляторном моменте сопротивления x=2, m0=0 и

× или

Механические характеристики при этом законе изображены на рис. При постоянной мощности статической нагрузки РС=const или : В этом случае Х=-1 Приняв m0=0, получим закон управления

или

Механические характеристики при этом законе имеют вид, изображенный на рисунке. Возможны также законы, обеспечивающие постоянство потокосцеплений статора y1=yS=const, ротора y2=yr=const, взаимного потокосцепления статора и ротора ym=const. Возможен закон поддержания относительной частоты тока ротора (j2=const), абсолютной частоты тока ротора (f2=const), закон управления по ЭДС и мо­менту

или

 

 


Дата добавления: 2015-10-28; просмотров: 80 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Коэффициент мощности и основные технико-экономические показатели вентильного электропривода| Статические механические характеристики АД при частотном управлении.

mybiblioteka.su - 2015-2024 год. (0.008 сек.)