Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Цветопередача

Цвет, цветовые модели и пространства

Свет и цвет

Цвет объекта, который вы видите, зависит от частоты тех световых волн, что попадают в ваши глаза. Этот набор, в свою очередь, зависит от двух факторов - от поглощаемых объектом частот, и от частоты источника света. Если поверхность не поглощает никаких цветов, тогда все цвета отражаются, и вы видите белый цвет. Если поверхность поглощает только лишь красный цвет, а зеленый и синий отражает, то вы увидите голубой цвет, и так далее. Факторы, влияющие на внешний вид конкретного цвета:

Способы образования цвета в природе:

Ключевой момент здесь заключается в том, что для отражения волн какой-либо частоты (или для пропускания волны через прозрачный фильтр - например, через цветное стекло) волны этой самой частоты должны существовать, их должен вырабатывать источник света. Например, свет, вырабатываемый обыкновенной лампой накаливания, содержит намного больше фотонов из желтого и зеленого спектра, а не синего - именно поэтому свет лампы накаливания кажется нам желтоватым и именно поэтому его называют теплым - в нем больше красного и зеленого, которые отражаются от предметов и достигают глаз.

Цвет любого предмета частично зависит от условий освещения. Грубо говоря, вы можете не узнать своего автомобиля на стоянке, освещенной натриевой лампой. Отметим, что для изменения ощущения цвета вовсе не обязательно такое яркое освещение - цвет изменится и если просто перейти из комнаты, освещенной лампой накаливания на уличный свет.

Рассмотрим несколько примеров, показывающих субъективности восприятия цвета. Известно, что белый квадрат на черном фоне будет казаться более крупным, чем черный квадрат такой же величины на белом фоне. Белый цвет излучается и выходит за свои пределы, в то время как черный ведет к сокращению размеров занимаемых им плоскостей. Светло-серый квадрат кажется темным на белом фоне, но тот же светло-серый квадрат на черном воспринимается светлым.

Разница становится весьма заметной, если эти композиции рассматривать одновременно. Когда цвет и впечатление от него (его воздействие) не совпадают, цвет производит диссонирующее, подвижное, нереальное и мимолетное впечатление. Вот несколько наглядных примеров.

Маленькие серые квадратики на этом изображении - одного и того же оттенка и размера, тем не менее, из-за фона левый квадратик должен казаться темнее и меньше правого.

Это изображение очень похоже на предыдущее, только контраст выражен сильнее. Опять таки, цвет и размер маленьких квадратиков одинаков, однако левый квадратик кажется темнее и меньше, чем правый.

Одновременный контраст влияет на цвет. Два зеленых квадрата в этом примере на самом деле одного цвета, но тот, что слева, должен выглядеть с оттенками желтого, или, по крайней мере, более светло. А тот, что справа - синеватым, более темным.

Два оранжевых круга в этом примере на самом деле одинаковы. В зависимости от того, какой цвет создает ваш монитор или принтер в данном случае, оранжевый круг слева может казаться значительно темнее того, что справа. Или он может казаться ближе к оранжевому, а тот, что справа - ближе к красному.

Круги в этом примере тоже одинаковы. В зависимости от настроек монитора или принтера, левый круг может казаться значительно более светлым, чем тот, что справа.

Даже на нормально настроенном принтере или экране разница между зелеными областями в верхней и нижней половинах велика. На самом деле цвет этих областей одинаков, но верхняя область кажется нам значительно темнее нижней.

Этот пример выделяется среди остальных. Каждый следующий рисунок будет примером тому высказыванию, что цвет может сильно отличаться в зависимости от соседствующих цветов. На этом рисунке вы можете видеть, насколько одинаковыми могут казаться совершенно разные цвета. Если ваш принтер или монитор правильно интерпретировали цвет, то две пары диагональных линий на изображении - или два икса, если вам так больше нравится - выглядят практически одинаково. Две полоски в правом нижнем углу изображения показывают, какого цвета эти самые кресты.

Если бы цвет был свойством объекта, то вы бы воспринимали его каждый раз одинаково при любых условиях освещенности. Но так как цвет на самом деле не является свойством объекта, а скорее является именно ощущением, единственное, что вы можете сравнивать - это ощущения конкретного цвета, вызванные вашей зрительной системой. Это ощущение изменится при изменении освещения, и для разных объектов эти изменения будут различными. Поэтому сравнивать цвета следует при определенном освещении.

Итак, изменение цвета после изменений условий освещенности объясняется различиями в источниках света. Действительно, предметы выглядят днем несколько иначе, чем вечером. Отметим еще одну особенность - в одних условиях освещения предметы могут казаться одинакового цвета, но стоит изменить освещение, и предметы будут разноцветными. Такое явление получило название метамерии.

Цветопередача

Для описания излучаемого и отраженного цвета используются разные математические модели. Их называют цветовыми моделями. В каждой модели определенный диапазон цветов представляют в виде 3D пространства. В этом пространстве каждый цвет существует в виде набора числовых координат. Этот метод дает возможность передавать цветовую информацию между компьютерами, программами и периферийными устройствами.

Цветовые модели могут быть аппаратно-зависимыми (их пока большинство, RGB и CMYK в их числе) и аппаратно-независимыми (модель Lab). В большинстве "современных" графических пакетов (например, в Photoshop) можно преобразовывать изображение из одной цветовой модели в другую.

Основной задачей является обеспечение соответствия цветов между печатью на бумаге и изображением на мониторе, на принтере, и на цифровой камере - обеспечить взаимное соответствие между всеми этими изображениями и реальным миром.

Нормальной цветопередаче мешало множество факторов. Среди самых существенных отметим следующие:

  1. Цвет - понятие субъективное. Казалось бы, совершенно очевидно, что цвет - это характеристика объекта. Трава - зеленая, небо - голубое, обои в комнате - цвета персика, и так далее. С первого взгляда кажется, что проще некуда. На самом деле все не так. Цвет - это ощущение, его можно сравнить с прикосновением. И те цвета, что мы видим, полностью субъективны, они интерпретируются нашей зрительной системой, нашим мозгом.
  2. На цвет влияет освещение: цвет предмета - и в оригинале, и в распечатанном виде - будет различным в зависимости от освещения. Например, изображение будет различным в зависимости от того, освещается ли предмет лампой накаливания, люминесцентной лампой, или дневным светом.
  3. Одинаковые цвета могут оказаться метамерными - два предмета имеют один цвет при одном освещении, но могут оказаться разных цветов при изменении освещения.
  4. В-четвертых, цвета взаимозависимы друг от друга - от того, каким образом расположены цвета, вы будете воспринимать общую картину по-разному. Такой эффект называется одновременным зрительным контрастом. Попробуйте нарисовать на синем фоне маленький зеленый квадратик, и он примет оттенок желтого. Если поменять фон на желтый, то квадрат примет оттенок синего.
  5. В-пятых, человеческие глаза - не сенсоры сканера или фотоаппарата. Сенсоры устройств и колбочки человеческих глаз воспринимают свет различных частот в разных пропорциях.
  6. Различные устройства характеризуются различной цветовой гаммой. Монитор способен показать такие цвета, которые не способен напечатать принтер, а принтер, в свою очередь, может произвести цвет, который нельзя воспроизвести на мониторе. Сенсоры камеры или сканера могут определять цвета, которые нельзя воспроизвести ни на мониторе, ни на принтере.
  7. Различные устройства используют разные цветовые модели. Цветовая модель - это представление цвета в математическом виде. Если устройства используют различные цветовые модели, они должны преобразовывать цвет из одной модели в другую. При таких операциях часто происходят ошибки. Это целая проблема для зависимых от устройств моделей (device-dependent models) - моделей, предназначенных только для работы с конкретным принтером, монитором, сканером или фотоаппаратом.

Важно не только знать все эти факторы, но и понимать разницу между поправимыми цветовыми ошибками и неисправимыми ошибками. Первые можно исправить программным путем. Со вторыми уже ничего не поделаешь, так как информации, требуемой для исправления, уже не существует. При таких ошибках информация теряется во время сканирования, съемки или печати.

Например, если вы не видите некоторых тонких оттенков, которые должны видеть, вы не сможете правильно воссоздать цвета. Если же вы сохранили оттенки, и видите, что цвет не тот, вы можете это исправить

Обычно в качестве образца фотографии, чтобы судить о качестве изображения, служит снимок корзины с фруктами, сделанный с близкого расстояния. Такой выбор не случаен - каждый знает, как должен выглядеть фрукт, поэтому можно судить о реалистичности изображения. Не обращайте пока внимания на цветопередачу, заметьте, изображение стало не трехмерным - каким вы его видели в оригинале. Такое уплощение означает потерю некоторых тонких оттенков при распечатке, и это считается неисправимой ошибкой.

Внимательно присмотритесь к изображению с плавно изменяющимся цветом (крупный план лица или небо), и вы убедитесь, что цвет изменяется постепенно, непрерывно. Резкое изменение цвета вместо постепенного называется огрублением (posterization), и относится к неисправимым ошибкам.

Попробуйте распечатать фотографию, на которой есть и темные, и яркие области - например, фотографию ряда деревьев на фоне ясного неба. Присмотритесь, теряется ли качество на этих областях? Детали должны просматриваться на всем диапазоне яркости.

Все эти эффекты происходят в результате потери градаций серого. Уплощение объекта происходит вследствие потери оттенков цвета, огрубление также происходит в результате потери различных оттенков. Потеря деталей на светлых и темных областях изображения также является результатом потери оттенков.

В любом случае, если нельзя произвести ту или иную градацию серого, теряется определенный цвет. А так как информация практически отсутствует, ничего поделать нельзя. С другой стороны, при других ошибках - например, сдвиге по цвету (shift in color) - информация не теряется, она просто не используется должным образом. И такие ошибки считаются исправимыми.

Основные цветовые модели:

· RGB

· CMY (Cyan Magenta Yellow)

· CMYK (Cyan Magenta Yellow Key, причем Key означает черный цвет)

· HSB

· Lab

· HSV (Hue, Saturation, Value)

· HLS (Hue, Lightness, Saturation)

· другие

 

Таблица значений некоторых цветов в числовой модели RGB

Цвет R G B
Красный (red)      
Зеленый (green)      
Синий (blue)      
Фуксин (magenta)      
Голубой (cyan)      
Желтый (yellow)      
Белый (white)      
Черный (black)      

Модель RGB (Red Green Blue) описывает излучаемые цвета и образована на трех базовых цветах: красном (red), зеленом (green) и синем (blue). Обычно ее называют моделью аддитивных основных цветов. Все цвета образуются смешиванием этих трех основных в разных пропорциях (т. е. с разными яркостями). При смешении двух лучей основных цветов, результирующий цвет будет светлее составляющих. Модель является аппаратно-зависимой, так как значения базовых цветов (а также точка белого) определяются качеством примененного в вашем мониторе люминофора. В результате на разных мониторах одно и то же изображение выглядит неодинаково.

Рис. Модель RGB Рис. Получение модели CMY из RGB Рис. Модель CMY

Модель CMY (Cyan Magenta Yellow). В этой модели основные цвета образуются путем вычитания из белого цветов основных аддитивных цветов модели RGB.

Цвета, использующие белый свет, вычитая из него определенные участки спектра называются субтрактивными. Основные цвета этой модели: голубой (белый минус красный), фуксин (в некоторых книгах его называют пурпурным) (белый минус зеленый) и желтый (белый минус синий). Эти цвета являются полиграфической триадой и могут быть легко воспроизведены полиграфическими машинами. При смешение двух субтрактивных цветов результат затемняется (в модели RGB было наоборот). При нулевом значении всех компонент образуется белый цвет (белая бумага). Эта модель представляет отраженный цвет, и ее называют моделью субтрактивных основных цветов. Данная модель является основной для полиграфии и также является аппаратно-зависимой.

Модель CMYK (Cyan Magenta Yellow Key, причем Key означает черный цвет). Эта модель является дальнейшим улучшением модели CMY и уже четырехканальна. Поскольку реальные типографские краски имеют примеси, их цвет не совпадает в точности с теоретически рассчитаным голубым, желтым и пурпурным. Особенно трудно получить из этих красок черный цвет. Поэтому в модели CMYK к триаде добавляют черный цвет. Почему-то в названии цветовой модели черный цвет зашифрован как K (от слова Key - ключ).Модель CMYK является "эмпирической", в отличие от теоретических моделей CMY и RGB. Модель является аппаратно-зависимой.

Модель HSB (Hue Saturation Brightness = Тон Насыщенность Яркость) построена на основе субъективного восприятия цвета человеком. Предложена в 1978 году. Эта модель тоже основана на цветах модели RGB, но любой цвет в ней определяется своим цветом (тоном), насыщенностью (то есть добавлением к нему белой краски) и яркостью (то есть добавлением к нему черной краски). Фактически любой цвет получается из спектрального добавлением серой краски. Эта модель аппаратно-зависимая и не соответствует восприятию человеческого глаза, так как глаз воспринимает спектральные цвета как цвета с разной яркостью (синий кажется более темным, чем красный), а в модели HSB им всем приписывается яркость 100%. Модель является аппаратно-зависимой.

Рис. Модели HSB и HSV

H - определяет частоту света и принимает значение от 0 до 360 градусов.
V или B: V - значение (принимает значения от 0 до 1) или B - яркость, определяющая уровень белого света (принимает значения от 0 до 100%). Являются высотой конуса.
S - определяет насыщенность цвета. Значение ее является радиусом конуса.

Тон (hue) - первый и единственный собственно цветовой компонент, представляющий собой один из цветов радуги (точнее - одну из точек цветового круга), максимально яркий и насыщенный.

Насыщенность (saturation) - соотношение основного тона и равного ему по яркости бесцветного серого. Максимально насыщенный цвет не содержит серого вообще, а при нулевой насыщенности, наоборот, полностью отсутствует основной тон (т.е. если при насыщенности, равной нулю, варьировать тон, результат будет оставаться одним и тем же - серым цветом).

Яркость (value) - общая яркость цвета. Максимальное значение этого параметра превращает любой цвет в белый, а минимальная - в черный (варьирование двух других параметров в этих крайних точках не оказывает никакого эффекта).

Если попытаться соотнести параметры системы HSV с разложением цвета по системе RGB, то их можно представить себе так: тон определяет общую конфигурацию движков на красной, зеленой и синей шкалах, варьирование насыщенности изменяет относительное расстояние между движками при сохранении их взаимного расположения, а изменение яркости сдвигает вверх или вниз все движки одновременно.

Удобно работать с палитрой в программах фирмы MetaCreations: длинный - и потому позволяющий выбирать тон с большей точностью - цветовой спектр сомкнут для компактности в кольцо, а остальные два параметра выбираются с помощью треугольного (а не квадратного) координатного поля.

Такое решение лаконично и функционально. Главное же преимущество такой палитры в том, что цветовой круг, по сравнению с линейной радугой, правильнее отражает наше представление о континууме тонов как о чем-то замкнутом, не имеющем определенного начала и конца, а фиксированное расположение цветов "по сторонам света" к тому же тренирует цветовую память и ассоциативное мышление.

Рис. Цветовой круг при S=1 и V=1 (B=100%)

Модель Lab является аппаратно-независимой моделью, что отличает ее от описанных выше. Экспериментально доказано, что восприятие цвета зависит от наблюдателя (вспомните дальтоников, существует разница в возрастном восприятии цвета и т.д.) и условий наблюдения (в темноте все серое). Ученые из Международной Комиссии по Освещению (CIE=Commission Internationale de l'Eclairage) в 1931 г. они стандартизировали условия наблюдения цветов и исследовали восприятие цвета у большой группы людей. В результате были экспериментально определены базовые компоненты новой цветовой модели XYZ. Эта модель аппаратно независима, поскольку описывает цвета так, как они воспринимаются человеком, точнее "стандартным наблюдателем CIE". Ее приняли за стандарт. Цветовая модель Lab, использующаяся в компьютерной графике, является производной от цветовой модели XYZ. Название она получила от своих базовых компонентов L, a и b. Компонент L несет информацию о яркостях изображения, а компоненты а и b - о его цветах (т.е. a и b - хроматические компоненты). Компонент а изменяется от зеленого до красного, а b - от синего до желтого. Яркость в этой модели отделена от цвета, что удобно для регулирования контраста, резкости и т.д. Однако, будучи абстрактной и сильно математизированной эта модель остается пока что неудобной для практической работы.

Получает широкое распространение модель sRGB, поддерживаемая в Windows. Однако конвертирование цветовой информации из зависимой от устройств модели в независимую модель, все равно, требует предположений, в результате которых могут возникнуть ошибки.

Поскольку все цветовые модели являются математическими, они легко конвертируются одна в другую по простым формулам. Такие конверторы встроены во все "приличные" графические программы. Но при этом возникают сложности с аппаратно-зависимыми моделями.

Зависящие от устройств модели могут носить одинаковые названия, но они не будут при этом описывать под одним именем одинаковые цвета, если не брать во внимание совпадения. Например, сканеры используют красные, зеленые и синие сенсоры, и представляют информацию о цвете в модели RGB. Поэтому, если вы отсканируете изображение и откроете его в программе для рисования, информация о цвете картинке определена в модели RGB. Если вы захотите распечатать это изображение на принтере, использующем, модель CMYK, вам придется по ходу дела переводить информацию о цвете.

Чтобы перевести цвет из одной модели в другую, ваше программное обеспечение должно сделать предположения относительно цветовой модели RGB, откуда оно будет переводить цвет, и относительно модели CMYK, куда будет осуществляться перевод. Если хотя бы одно из предположений окажется неправильным - а они редко оказываются правильными - цвета могут сдвинуться еще больше, чем если бы вы просто переместили информацию о цвете из одной модели в другую вообще без преобразования.

Существует два способа устранения ошибок при передаче информации о цвете. Можно либо все аппаратное и программное обеспечение должно использовать независимую от устройства модель, либо они должны поставляться с таблицами для перевода цвета - известными как профили - они позволят программному обеспечению перевести информацию о цвете с устройства без каких-либо предположений.


Дата добавления: 2015-10-28; просмотров: 54 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Бесплатная доставка заказа курьерской службой.| Профили ICC, sRGB и scRGB

mybiblioteka.su - 2015-2024 год. (0.016 сек.)