Читайте также:
|
|
Разложение непрерывных сигналов в ряд Котельникова
Как отмечено ранее, любые сигналы конечной длительности теоретически имеют бесконечно широкий спектр частот. В то же время доля энергии, передаваемая на высоких частотах, очень мала и ею при расчете полной энергии сигнала можно пренебречь. Следовательно, сигналы с ограниченным спектром являются удобными математическими моделями реальных сигналов.
В 1933 году В. А. Котельников доказал, что сигнал s (t) с ограниченной полосой частот, не имеющий спектральных компонент с частотами, которые превышают значение ω в = 2π F в, однозначно определяется значениями, выбранными через равные промежутки времени [1]
Δ t = π / ω в = 1/2 F в.
Известно, что при аналогово-цифровом преобразовании, чем меньше частота оцифровки (или больше период дискретизации) и грубее квантование сигнала, тем меньше данных необходимо для представления аналогового сигнала в цифровом виде. С другой стороны с уменьшением объема данных увеличивается вероятность потери информации содержащейся в сигнале.
Чтобы продемонстрировать искажение информации при неправильном выборе частоты дискретизации сигнала рассмотрим примеры.
Пример.
Гармонический сигнал имеет частоту f (период T = 1/ f). Проведем дискретизацию сигнала с периодом дискретизации T д меньшим половины периода входного сигнала T (рис. 4.1).
Рис. 4.1. Дискретизация сигнала с периодом Т д < Т /2
Очевидно, что дискретные отсчеты сигнала однозначно не отображают форму исходного сигнала, в частности по получившимся точкам можно построить гармонический сигнал с периодом T искаж., отличающимся от периода исходного сигнала T. Период T искаж. больше периода исходного сигнала T, соответственно частота меньше, частоты исходного сигнала f (рис. 4.2).
Данный эффект называется стробоскопическим эффектом или алиасингом. Он заключается в появлении ложной низкочастотной составляющей при дискретизации сигнала с частотой меньшей удвоенной частоты исходного сигнала (или с периодом большим половины периода исходного сигнала), отсутствующей в исходном сигнале.
Рис. 4.2. Стробоскопический эффект дискретизации
При дискретизации с периодом равным половине исходного аналогового сигнала (f д = 2 f) возникает неопределенность начальной фазы и амплитуды сигнала, т.е. возможно зеркальное искажение (противофаза), при этом частота исходного сигнала не искажается. В крайнем случае, мы можем получить отсчеты сигнала равные нулю (рис. 4.3).
Рис. 4.3. Дискретизация сигнала с периодом Т д = Т /2
Если период дискретизации меньше половины периода исходного сигнала, то очевидно, что через получившиеся после оцифровки точки можно построить только один гармонический сигнал, соответствующий исходному, без искажения начальной фазы, амплитуды и частоты (рис. 4.4).
Рис. 4.4. Дискретизация сигнала с периодом Т д < Т /2
Таким образом, для адекватного восстановления гармонического сигнала по дискретным отсчетам, период дискретизации должен быть не меньше половины периода сигнала. Частота равная половине частоты дискретизации называется частотой Найквиста fN = f д/2.
Таким образом, аналоговый сигнал с ограниченным спектром может быть восстановлен однозначно и без искажений по своим дискретным отсчетам, взятым с частотой большей удвоенной максимальной частоты его спектра F д > 2· F max.
Данное утверждение известно как теорема Котельникова (в западной литературе теорема Найквиста-Шеннона) или теорема отсчетов.
Рис. 4.5. Временные диаграммы непрерывного сигнала s (t) и дискретизированного s д(t)
Важно, что не надо передавать непрерывно исходный сигнал s (t), достаточно передавать отсчёты s (k D t). Это первый шаг перехода от непрерывного сигнала к цифровому. С точки зрения математики теорема Котельникова означает представление сигнала в виде ряда:
, (4.1)
где s (k ∆ t) – отсчёты;
(sin ω в(t - k ∆ t)) / ω в(t - k ∆ t) – функции отсчётов.
Ряд Котельникова – это разложение сигнала s (t) в ряд по ортогональным функциям φk (t).
(4.2)
Теоретически дискретизация осуществляется с помощью d-импульсов.
;
Рис. 4.6. Временная диаграмма одиночного d-импульса
Спектр одиночного d-импульса получим, используя преобразование Фурье:
Использовано "фильтрующее" свойство дельта-функций:
Следовательно, спектр одиночного дельта-импульса имеет вид:
Рис. 4.7. Спектр одиночного δ-импульса
Чтобы получить отсчёты функции s (t) перемножим функцию s (t) на периодическую последовательность дельта-импульсов с периодом Т = D t.
Рис. 4.8. Временная диаграмма периодической последовательности
δ-импульсов
Так как сигнал периодический, то его спектр будет дискретным.
(4.3)
;
Т = D t; ω д – частота дискретизации.
Спектр периодической последовательности дельта-импульсов в соответствии с формулой для U (t) имеет следующий вид:
Рис. 4.9. Спектр периодической последовательности δ-импульсов
Дата добавления: 2015-10-28; просмотров: 428 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
VII.2.1. Матеріали активізації студентів під час викладення теоретичного матеріалу. | | | Спектр сигнала дискретизированного импульсами конечной длительности (амплитудно-импульсно модулированный (АИМ) сигнал) |