Читайте также:
|
|
Существующая в РФ квалификация химических реактивов базируется на положении о присвоении реактивам квалификации, принятом в СССР:
· «Чистый» («ч.») — низшая квалификация реактива. Содержание основного компонента (без примесей) 98 % и выше.
· «Чистый для анализа» («ч.д.а.») — содержание основного компонента может быть выше или значительно ниже 98 %, в зависимости от области применения. Примеси не превышают допустимого предела, позволяющего проводить точные аналитические исследования.
· «Химически чистый» («х.ч.») — высшая степень чистоты реактива. Содержание основного компонента более 99 %.
· «Особо чистый» («осч») — квалификация установлена для веществ высокой чистоты. К особо чистым относятся вещества более высокой степени чистоты по сравнению с соответствующими химическими реактивами высшей из существующих квалификаций. Особо чистые вещества содержат примеси в таком незначительном количестве, что они не влияют на основные специфические свойства веществ. Число и концентрация примесей в отдельных особо чистых веществах различны и определяются, с одной стороны, потребностями практики, а с другой — достижениями препаративной и аналитической химии.
Каждому особо чистому веществу присваивается соответствующая марка в зависимости от природы и числа лимитируемых (контролируемых) в нём примесей, а также их содержания:
· Для особо чистых веществ, в которых лимитируются только неорганические примеси, марка обозначается буквами «ОСЧ» (особо чистый) и следующими за ними двумя (через тире) цифрами: первая показывает количество лимитируемых неорганических примесей, вторая — отрицательный показатель степени суммы содержания этих примесей (примеси, лимитируемые по той же норме в одноимённом химическом реактиве, не учитываются). Например, марка особо чистого вещества, в котором лимитируются 11 неорганических примесей и сумма их составляет 2,5×10−4% (масс.), обозначается «осч 11-4».
· Для особо чистых веществ, в которых лимитируются только органические примеси, марка обозначается буквами «оп» (органические примеси), затем (через тире) цифрой, соответствующей отрицательному показателю степени суммы их содержания, и буквами «осч». Так, марка особо чистого вещества при сумме содержащихся органических примесей 10-3 % (масс.) обозначается «оп-3 осч».
· Для особо чистых веществ, в которых лимитируются как органические, так и неорганические примеси, при установлении марки учитывается содержание тех и других примесей. Например, марка особо чистого вещества, имеющего сумму органических примесей 2×10−4% (масс.) и сумму восьми неорганических примесей 3×10−5% (масс.), обозначается «оп-4 осч 8-5».
Особо чистые вещества получают путём т. н. глубокой (=наиболее тщательной) очистки веществ, для которой широко используют различные физико-химические методы (как правило, в сочетании) — осаждение, ректификация, дистилляция, экстракция, сорбция, ионный обмен и т. д. Разделение может быть основано и на различии в химических свойствах компонентов исследуемой системы, что позволяет использовать для получения особо чистых веществ также комплексообразование, избирательное окисление или восстановление и т. п. При очистке веществ следует учитывать возможное поступление загрязняющих примесей из воздуха, реактивов, воды, а также из материала аппаратуры.
Различные области применения химических реактивов налагают особые ограничения на содержание примесей, в связи с чем имеются специальные виды квалификаций:
· Спектрально чистый;
· Оптически чистый;
· Хирально чистый;
· Ядерно чистый;
· Для криоскопии;
· Для термохимии;
· Для микроскопии;
· Для хроматографии;
и т. д.
Большинство химических реактивов контролируют по двум-трём характеристикам. Однако многие кислоты, основания и соли, а также реактивы, применяемые вбиологических
исследованиях, контролируют по более чем 20 показателям. При этом важно также учитывать наличие взвешенных частиц, так как даже разбавленный раствор взвешенных частиц с линейными размерами меньше 1 мкм может внести заметный вклад в суммарную концентрацию примесей.Требования к качеству химических реактивов, выпускаемых в РФ, определяются Государственными Стандартами (ГОСТ)[2] или Техническими Условиями (ТУ).
Спектральный анализ — совокупность методов качественного и количественного определения состава объекта, основанная на изучении спектров взаимодействия материи с излучением, включая спектры электромагнитного излучения, акустических волн, распределения по массам и энергиям элементарных частиц и др.
В зависимости от целей анализа и типов спектров выделяют несколько методов спектрального анализа. Атомный и молекулярный спектральные анализы позволяют определять элементный и молекулярный состав вещества, соответственно. В эмиссионном и абсорбционном методах состав определяется по спектрам испускания и поглощения.
Масс-спектрометрический анализ осуществляется по спектрам масс атомарных или молекулярных ионов и позволяет определять изотопный состав объекта.
Оптическая спектроскопия — спектроскопия в оптическом (видимом) диапазоне длин волн с примыкающими к нему ультрафиолетовым и инфракрасным диапазонами (от нескольких сотен нанометров до единиц микрон). Этим методом получено подавляющее большинство информации о том, как устроено вещество на атомном и молекулярном уровне, как атомы и молекулы ведут себя при объединении в конденсированные вещества.
Особенность оптической спектроскопии по сравнению с другими видами спектроскопии состоит в том, что большинство структурно организованной материи (крупнее атомов) резонансно взаимодействует с электромагнитным полем именно в оптическом диапазоне частот. Поэтому именно оптическая спектроскопия используется в настоящее время очень широко для получения информации о веществе.
Хиральность (молекулярная хиральность) — в химии свойство молекулы быть несовместимой со своим зеркальным отражением любой комбинацией вращений и перемещений в трёхмерном пространстве.
Два энантиомера аминокислот
Наряду с конфигурацией и конформацией хиральность — основное понятие современной стереохимии. Хиральностью обладают молекулы, в которых отсутствуют зеркально-поворотные оси симметрии Sn
Изото́пы (от др.-греч. ισος — «равный», «одинаковый», и τόπος — «место») — разновидности атомов (и ядер) какого-либохимического элемента
, которые имеют одинаковый атомный номер, но при этом разные массовые числа. Название связано с тем, что все изотопы одного атома помещаются в одно и то же место (в одну клетку) таблицы Менделеева. Химические свойства атома зависят от строения электронной оболочки, которая, в свою очередь, определяется в основном зарядом ядра Z (то есть количеством протонов в нём), и почти не зависят от его массового числа A (то есть суммарного числа протонов Z и нейтронов N). Все изотопы одного элемента имеют одинаковый заряд ядра, отличаясь лишь числом нейтронов. Обычно изотоп обозначается символом химического элемента, к которому он относится, с добавлением верхнего левого индекса, означающего массовое число (например,12C, 222Rn). Можно также написать название элемента с добавлением через дефис массового числа (например, углерод-12, радон-222). Некоторые изотопы имеют традиционные собственные названия (например, дейтерий, актинон).Пример изотопов: 168O, 178O, 188O — три стабильных изотопа кислорода.
Криоскопия (от греч. κρύο — холод и греч. σκοπέω смотрю) — метод исследования растворов, в основе которого лежит измерение понижения температуры замерзанияраствора
по сравнению с температурой замерзания чистого растворителя. Был предложен Ф. Раулем в 1882 году.
Термохи́мия — раздел химической термодинамики, в задачу которой входит определение и изучение тепловых эффектов реакций, а также установление их взаимосвязей с различными физико-химическими параметрами. Ещё одной из задач термохимии является измерение теплоёмкостей веществ и установление их теплотфазовых переходов
.
Микроскопия (МКС) (греч. μΙκροσ — мелкий, маленький и σκοποσ — вижу) — изучение объектов с использованием микроскопа. Подразделяется на несколько видов: оптическая микроскопия, электронная микроскопия, многофотонная микроскопия, рентгеновская микроскопия или рентгеновская лазерная микроскопия, отличающиеся использованием электромагнитных лучей с возможностью рассмотрения и получения изображений микроэлементов вещества в зависимости от разрешающей способности приборов (микроскопов).
Хроматогра́фия (от др.-греч. χρῶμα — цвет) — динамический сорбционный метод разделения и анализа смесей веществ, а также изучения физико-химических свойств веществ. Основан на распределении веществ между двумя фазами — неподвижной (твердая фаза или жидкость, связанная на инертном носителе) и подвижной (газовая или жидкая фаза, элюент). Название метода связано с первыми экспериментами по хроматографии, в ходе которых разработчик метода Михаил Цвет разделял ярко окрашенные растительные пигменты.
Дата добавления: 2015-10-24; просмотров: 175 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Класс ракообразные | | | Квалификация высокочистых веществ |